Skip directly to local search Skip directly to A to Z list Skip directly to navigation Skip directly to site content Skip directly to page options
CDC Home

Volume 13, Number 4—April 2007

Letter

Transfusion-associated Hepatitis E, France

Philippe Colson*†Comments to Author , Carole Coze*, Pierre Gallian†‡, Mireille Henry*†, Philippe de Micco†‡, and Catherine Tamalet*†
Author affiliations: *Centre Hospitalier Régional Universitaire, Timone, Marseille, France; †Université de la Méditerranée, Marseille, France; ‡Etablissement Français du Sang Alpes–Mediterranée, Marseille, France;

Main Article

Figure

Outline of phylogenetic tree (complete figure available online, http://www.cdc.gov/EID/13/4/zzz-T.htm) constructed by the neighbor-joining method on the basis of partial nucleotide sequences of the open reading frame (ORF) 2 region of hepatitis E virus (HEV) genome obtained from the blood donor and the blood recipient, with sequences of other local HEV strains previously identified, and published HEV sequences. Local HEV sequences were obtained after reverse transcription–PCR amplification that used SuperScript One-Step RT-PCR System (Invitrogen Life Technologies with in-house protocols that used outer primers HevMrsFwd1: 5’-AATTATGCYCAGTAYCGRGTT-3’, 5663 nt (primer location is defined in reference to GenBank sequence accession no. NC_001434); HevMrsRev1: 5′-CCTTTRTCYTGCTGRGCATTCTC-3’, 6393, then inner primers HEVMrsFwd2 5’-GTWATGCTYTGCATACATGGCT-3’, 5,948 and HevMrs2Rev2: 5’-AGCCGACGAAATCAATTCTGT-3’, 6,295, to obtain a fragment of 347 bp. PCR fragments were purified then directly sequenced by using the inner primers and the Big Dye Terminator cycle sequencing kit version 1.1 on ABI Prism 3130 genetic analyzer (Applied Biosystems, Branchburg, NJ, USA). HEV genotype was determined by using phylogenetic analysis with a set of published HEV sequences (genotype and subtype are indicated with the GenBank accession no.) (8). Bootstrap values are indicated when >50% as a percentage obtained from 100 resamplings of the data. HEV sequences from the blood donor and recipient (indicated by black squares) have been submitted to GenBank (accession nos. EF028801 and EF028802); white squares indicate HEV sequences from other individuals with hepatitis E living in Marseille and its geographic area. Black inverted triangles indicate sequences involved in transfusion-transmitted hepatitis E cases in Japan (Japan A [9]); white inverted triangles indicate other Japanese HEV sequences from the same geographic area (Japan A [9]). White triangles indicate HEV sequences from the United Kingdom (3) that have an 80%–100% homology at the nucleotide level with those obtained by Boxall et al. (7). White circles indicate sequences from patients living in Hokkaido, Japan (Japan B; [8]); ORF 1 sequences from these strains were very similar to those characterized in a transfusion-transmitted hepatitis E case that occurred in Hokkaido.

Figure. Outline of phylogenetic tree (complete figure available online, http://www.cdc.gov/EID/13/4/zzz-T.htm) constructed by the neighbor-joining method on the basis of partial nucleotide sequences of the open reading frame (ORF) 2 region of hepatitis E virus (HEV) genome obtained from the blood donor and the blood recipient, with sequences of other local HEV strains previously identified, and published HEV sequences. Local HEV sequences were obtained after reverse transcription–PCR amplification that used SuperScript One-Step RT-PCR System (Invitrogen Life Technologies with in-house protocols that used outer primers HevMrsFwd1: 5’-AATTATGCYCAGTAYCGRGTT-3’, 5663 nt (primer location is defined in reference to GenBank sequence accession no. NC_001434); HevMrsRev1: 5′-CCTTTRTCYTGCTGRGCATTCTC-3’, 6393, then inner primers HEVMrsFwd2 5’-GTWATGCTYTGCATACATGGCT-3’, 5,948 and HevMrs2Rev2: 5’-AGCCGACGAAATCAATTCTGT-3’, 6,295, to obtain a fragment of 347 bp. PCR fragments were purified then directly sequenced by using the inner primers and the Big Dye Terminator cycle sequencing kit version 1.1 on ABI Prism 3130 genetic analyzer (Applied Biosystems, Branchburg, NJ, USA). HEV genotype was determined by using phylogenetic analysis with a set of published HEV sequences (genotype and subtype are indicated with the GenBank accession no.) (8). Bootstrap values are indicated when >50% as a percentage obtained from 100 resamplings of the data. HEV sequences from the blood donor and recipient (indicated by black squares) have been submitted to GenBank (accession nos. EF028801 and EF028802); white squares indicate HEV sequences from other individuals with hepatitis E living in Marseille and its geographic area. Black inverted triangles indicate sequences involved in transfusion-transmitted hepatitis E cases in Japan (Japan A [9]); white inverted triangles indicate other Japanese HEV sequences from the same geographic area (Japan A [9]). White triangles indicate HEV sequences from the United Kingdom (3) that have an 80%–100% homology at the nucleotide level with those obtained by Boxall et al. (7). White circles indicate sequences from patients living in Hokkaido, Japan (Japan B; [8]); ORF 1 sequences from these strains were very similar to those characterized in a transfusion-transmitted hepatitis E case that occurred in Hokkaido.

Main Article

Top of Page

 

Past Issues

Select a Past Issue:

World Malaria Day - April 25, 2014 - Invest in the future, defeat malaria

20th Anniversary - National Infant Immunization Week - Immunization. Power to Protect.

Art in Science - Selections from Emerging Infectious Diseases
Now available for order



CDC 24/7 – Saving Lives, Protecting People, Saving Money. Learn More About How CDC Works For You…

USA.gov: The U.S. Government's Official Web PortalDepartment of Health and Human Services
Centers for Disease Control and Prevention   1600 Clifton Rd. Atlanta, GA 30333, USA
800-CDC-INFO (800-232-4636) TTY: (888) 232-6348 - Contact CDC–INFO