Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 11, Number 10—October 2005
Perspective

Antimicrobial Drug Resistance: "Prediction Is Very Difficult, Especially about the Future"1

Patrice Courvalin*Comments to Author 
Author affiliation: *Institut Pasteur, Paris, France

Main Article

Figure 1

Comparison of the van gene cluster from the glycopeptide producer Streptomyces toyocaensis (32) and of the vanA operon (33) from gram-positive cocci. Open arrows represent coding sequences and indicate direction of transcription. The guanosine plus cytosine content (% GC) is indicated in the arrows. The percentage of amino acid (aa) identity between the deduced proteins is indicated under the arrows.

Figure 1. Comparison of the van gene cluster from the glycopeptide producer Streptomyces toyocaensis (32) and of the vanA operon (33) from gram-positive cocci. Open arrows represent coding sequences and indicate direction of transcription. The guanosine plus cytosine content (% GC) is indicated in the arrows. The percentage of amino acid (aa) identity between the deduced proteins is indicated under the arrows.

Main Article

References
  1. Courvalin  P, Trieu-Cuot  P. Minimizing potential resistance: the molecular view. Clin Infect Dis. 2001;33:S13846. DOIPubMedGoogle Scholar
  2. Seppala  H, Klaukka  T, Lehtonen  R, Nenonen  E, Huovinen  P. Outpatient use of erythromycin: link to increased erythromycin resistance in group A streptococci. Clin Infect Dis. 1995;21:137885. DOIPubMedGoogle Scholar
  3. Andersson  DI. Persistence of antibiotic resistant bacteria. Curr Opin Microbiol. 2003;6:4526. DOIPubMedGoogle Scholar
  4. Chiew  YF, Yeo  SF, Hall  LM, Livermore  DM. Can susceptibility to an antimicrobial be restored by halting its use? The case of streptomycin versus Enterobacteriaceae. J Antimicrob Chemother. 1998;41:24751. DOIPubMedGoogle Scholar
  5. Macrina  FL, Archer  GL. Conjugation and broad host range plasmids in streptococci and staphylococci. In: Clewell DB, editor. Bacterial conjugation. New York, London: Plenun Press; 1993. p. 313–29.
  6. Charpentier  E, Courvalin  P. Antibiotic resistance in Listeria spp. Antimicrob Agents Chemother. 1999;43:21038.PubMedGoogle Scholar
  7. Mazodier  P, Davies  J. Gene transfer between distantly related bacteria. Annu Rev Genet. 1991;25:14774. DOIPubMedGoogle Scholar
  8. Walker  MS, Walker  JB. Streptomycin biosynthesis and metabolism. J Biol Chem. 1970;245:66839.PubMedGoogle Scholar
  9. Weigel  LM, Clewell  DB, Gill  SR, Clark  NC, McDougal  LK, Flannagan  SE, Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science. 2003;302:156971. DOIPubMedGoogle Scholar
  10. Moubareck  C, Bourgeois  N, Courvalin  P, Doucet-Populaire  F. Multiple antibiotic resistance gene transfer from animal to human enterococci in the digestive tract of gnotobiotic mice. Antimicrob Agents Chemother. 2003;47:29936. DOIPubMedGoogle Scholar
  11. Taddei  F, Matic  I, Godelle  B, Radman  M. To be a mutator, or how pathogenic and commensal bacteria can evolve rapidly. Trends Microbiol. 1997;5:4278. DOIPubMedGoogle Scholar
  12. Petrosino  J, Cantu  C III, Palzkill  T. β-lactamases: protein evolution in real time. Trends Microbiol. 1998;6:3237. DOIPubMedGoogle Scholar
  13. Chen  ST, Clowes  RC. Variations between the nucleotide sequences of Tn1, Tn2, and Tn3 and expression of β-lactamase in Pseudomonas aeruginosa and Escherichia coli. J Bacteriol. 1987;169:9136.PubMedGoogle Scholar
  14. Baptista  M, Depardieu  F, Reynolds  P, Courvalin  P, Arthur  M. Mutations leading to increased levels of resistance to glycopeptide antibiotics in VanB-type enterococci. Mol Microbiol. 1997;25:93105. DOIPubMedGoogle Scholar
  15. Goussard  S, Sougakoff  W, Mabilat  C, Bauernfeind  A, Courvalin  P. An IS1-like element is responsible for high-level synthesis of extended-spectrum β-lactamase TEM-6 in Enterobacteriaceae. J Gen Microbiol. 1991;137:26817.PubMedGoogle Scholar
  16. Rudant  E, Courvalin  P, Lambert  T. Characterization of IS18, an element capable of activating the silent aac(6´)-Ij gene of Acinetobacter sp. 13 strain BM2716 by transposition. Antimicrob Agents Chemother. 1998;42:275961.PubMedGoogle Scholar
  17. Magnet  S, Courvalin  P, Lambert  T. Activation of the cryptic aac(6´)-Iy aminoglycoside resistance gene of Salmonella by a chromosomal deletion generating a transcriptional fusion. J Bacteriol. 1999;181:66505.PubMedGoogle Scholar
  18. Leclercq  R, Courvalin  P. Resistance to macrolides and related antibiotics in Streptococcus pneumoniae. Antimicrob Agents Chemother. 2002;46:272734. DOIPubMedGoogle Scholar
  19. Courvalin  P. Genotypic approach to the study of bacterial resistance to antibiotics. Antimicrob Agents Chemother. 1991;35:101923.PubMedGoogle Scholar
  20. Ferrandiz  MJ, Fenoll  A, Liñares  J, de la Campa  AG. Horizontal transfer of parC and gyrA in fluoroquinolone-resistant clinical isolates of Streptococcus pneumoniae. Antimicrob Agents Chemother. 2000;44:8407. DOIPubMedGoogle Scholar
  21. Arthur  M, Courvalin  P. Contribution of two different mechanisms to erythromycin resistance in Escherichia coli. Antimicrob Agents Chemother. 1986;30:694700.PubMedGoogle Scholar
  22. Ferretti  JJ, Gilmore  KS, Courvalin  P. Nucleotide sequence analysis of the bifunctional 6´-aminoglycoside acetyltransferase, 2´´-aminoglycoside phosphotransferase determinant from Streptococcus faecalis: identification and cloning of gene regions specifying the two activities. J Bacteriol. 1986;167:6318.PubMedGoogle Scholar
  23. Sougakoff  W, Goussard  S, Gerbaud  G, Courvalin  P. Plasmid-mediated resistance to third-generation cephalosporins caused by point-mutations in TEM-type penicillinase genes. Rev Infect Dis. 1988;10:87984. DOIPubMedGoogle Scholar
  24. Mabilat  C, Courvalin  P. Development of "oligotyping" for characterization and molecular epidemiology of TEM β-lactamases in members of the family Enterobacteriaceae. Antimicrob Agents Chemother. 1990;34:22106.PubMedGoogle Scholar
  25. Nikaido  H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev. 2003;67:593656. DOIPubMedGoogle Scholar
  26. Li  XZ, Nikaido  H. Efflux-mediated drug resistance in bacteria. Drugs. 2004;64:159204. DOIPubMedGoogle Scholar
  27. Ménard  R, Molinas  C, Arthur  M, Duval  J, Courvalin  P, Leclercq  R. Overproduction of 3´-aminoglycoside phosphotransferase type I confers resistance to tobramycin in Escherichia coli. Antimicrob Agents Chemother. 1993;37:7883.PubMedGoogle Scholar
  28. Magnet  S, Smith  TA, Zheng  R, Nordmann  P, Blanchard  JS. Aminoglycoside resistance resulting from tight drug binding to an altered aminoglycoside acetyltransferase. Antimicrob Agents Chemother. 2003;47:157783. DOIPubMedGoogle Scholar
  29. Srinivasan  A, Dick  JD, Perl  TM. Vancomycin resistance in staphylococci. Clin Microbiol Rev. 2002;15:4308. DOIPubMedGoogle Scholar
  30. Courvalin  P. Transfer of antibiotic resistance genes between gram-positive and gram-negative bacteria. Antimicrob Agents Chemother. 1994;38:144751.PubMedGoogle Scholar
  31. Quintiliani  R Jr, Sahm  D, Courvalin  P. Mechanisms of resistance to antimicrobial agents. In Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH, editors. Manual of clinical microbiology. 7th ed. Washington: American Society for Microbiology; 1998. p. 1505–25.
  32. Pootoolal  J, Thomas  MG, Marshall  CG, Neu  JM, Hubbard  BK, Walsh  CT, Assembling the glycopeptide antibiotic scaffold: the biosynthesis of A47934 from Streptomyces toyocaensis NRRL15009. Proc Natl Acad Sci U S A. 2002;99:89627.PubMedGoogle Scholar
  33. Arthur  M, Molinas  C, Depardieu  F, Courvalin  P. Characterization of Tn1546, a Tn3-related transposon conferring glycopeptide resistance by synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147. J Bacteriol. 1993;175:11727.PubMedGoogle Scholar

Main Article

1Niels Bohr.

Page created: February 22, 2012
Page updated: February 22, 2012
Page reviewed: February 22, 2012
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external