Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 19, Number 8—August 2013
Research

Aichi Virus in Sewage and Surface Water, the Netherlands

Willemijn J. LodderComments to Author , Saskia A. Rutjes, Katsuhisa Takumi, and Ana Maria de Roda Husman
Author affiliations: National Institute of Public Health and the Environment (RIVM), Bilthoven, the Netherlands (W.J. Lodder, S.A. Rutjes, K. Takumi, A.M. de Roda Husman); Utrecht University, Utrecht, the Netherlands (A.M. de Roda Husman).

Main Article

Figure 2

Phylogenetic relationships and genetic diversity over time for 37 sequences of Aichi virus genotype A strains collected in the Netherlands. A) Maximum-clade credibility tree was generated by the Bayesian Markov chain Monte Carlo method in BEAST (28), based on a multiple alignment of nucleotide sequences (481-nt) of the viral protein 1 region. The tree is rooted to the most recent common ancestor, visualized in FigTree (http://tree.bio.ed.ac.uk/software/figtree/), and plotted on a temporal y-axis

Figure 2. . . Phylogenetic relationships and genetic diversity over time for 37 sequences of Aichi virus genotype A strains collected in the Netherlands. A) Maximum-clade credibility tree was generated by the Bayesian Markov chain Monte Carlo method in BEAST (28), based on a multiple alignment of nucleotide sequences (481-nt) of the viral protein 1 region. The tree is rooted to the most recent common ancestor, visualized in FigTree (http://tree.bio.ed.ac.uk/software/figtree/), and plotted on a temporal y-axis scale using the sampling dates. Aichi virus strains from the Netherlands isolated from sewage (red) and surface waters (blue) are indicated. Clusters of sequences of the same sample are represented by triangles (a collapsed branch), and the number of isolates in each triangle is shown in parentheses. B) Bayesian skyline plot obtained by analyzing different Aichi virus sequences sampled at different times. The results are a relative measure for genetic diversity through time. The line represents the median, and the shaded area represents the 95% highest posterior density of the number of isolates.

Main Article

References
  1. Clasen  T, Schmidt  WP, Rabie  T, Roberts  I, Cairncross  S. Interventions to improve water quality for preventing diarrhoea: systematic review and meta-analysis. BMJ. 2007;334:782. DOIPubMedGoogle Scholar
  2. Tapparel  C, Siegrist  F, Petty  TJ, Kaiser  L. Picornavirus and enterovirus diversity with associated human diseases. Infect Genet Evol. 2013;14:28293. DOIPubMedGoogle Scholar
  3. Yamashita  T, Kobayashi  S, Sakae  K, Nakata  S, Chiba  S, Ishihara  Y, Isolation of cytopathic small round viruses with BS-C-1 cells from patients with gastroenteritis. J Infect Dis. 1991;164:9547. DOIPubMedGoogle Scholar
  4. Yamashita  T, Sakae  K, Tsuzuki  H, Suzuki  Y, Ishikawa  N, Takeda  N, Complete nucleotide sequence and genetic organization of Aichi virus, a distinct member of the Picornaviridae associated with acute gastroenteritis in humans. J Virol. 1998;72:840812 .PubMedGoogle Scholar
  5. Yamashita  T, Ito  M, Tsuzuki  H, Sakae  K. Identification of Aichi virus infection by measurement of immunoglobulin responses in an enzyme-linked immunosorbent assay. J Clin Microbiol. 2001;39:417880. DOIPubMedGoogle Scholar
  6. Oh  DY, Silva  PA, Hauroeder  B, Diedrich  S, Cardoso  DD, Schreier  E. Molecular characterization of the first Aichi viruses isolated in Europe and in South America. Arch Virol. 2006;151:1199206. DOIPubMedGoogle Scholar
  7. Pham  NT, Khamrin  P, Nguyen  TA, Kanti  DS, Phan  TG, Okitsu  S, Isolation and molecular characterization of Aichi viruses from fecal specimens collected in Japan, Bangladesh, Thailand, and Vietnam. J Clin Microbiol. 2007;45:22878. DOIPubMedGoogle Scholar
  8. Yang  S, Zhang  W, Shen  Q, Yang  Z, Zhu  J, Cui  L, Aichi virus strains in children with gastroenteritis, China. Emerg Infect Dis. 2009;15:17035. DOIPubMedGoogle Scholar
  9. Ambert-Balay  K, Lorrot  M, Bon  F, Giraudon  H, Kaplon  J, Wolfer  M, Prevalence and genetic diversity of Aichi virus strains in stool samples from community and hospitalized patients. J Clin Microbiol. 2008;46:12528. DOIPubMedGoogle Scholar
  10. Jonsson  N, Wahlstrom  K, Svensson  L, Serrander  L, Lindberg  AM. Aichi virus infection in elderly people in Sweden. Arch Virol. 2012;157:13659. DOIPubMedGoogle Scholar
  11. Kaikkonen  S, Rasanen  S, Ramet  M, Vesikari  T. Aichi virus infection in children with acute gastroenteritis in Finland. Epidemiol Infect. 2010;138:116671. DOIPubMedGoogle Scholar
  12. Reuter  G, Boldizsar  A, Papp  G, Pankovics  P. Detection of Aichi virus shedding in a child with enteric and extraintestinal symptoms in Hungary. Arch Virol. 2009;154:152932. DOIPubMedGoogle Scholar
  13. Sdiri-Loulizi  K, Hassine  M, Gharbi-Khelifi  H, Sakly  N, Chouchane  S, Guediche  MN, Detection and genomic characterization of Aichi viruses in stool samples from children in Monastir, Tunisia. J Clin Microbiol. 2009;47:22758. DOIPubMedGoogle Scholar
  14. Reuter  G, Boros  A, Pankovics  P. Kobuviruses—a comprehensive review. Rev Med Virol. 2011;21:3241. DOIPubMedGoogle Scholar
  15. Yamashita  T, Sugiyama  M, Tsuzuki  H, Sakae  K, Suzuki  Y, Miyazaki  Y. Application of a reverse transcription–PCR for identification and differentiation of Aichi virus, a new member of the Picornavirus family associated with gastroenteritis in humans. J Clin Microbiol. 2000;38:295561 .PubMedGoogle Scholar
  16. Pham  NT, Trinh  QD, Nguyen  TA, Dey  SK, Phan  TG. Hoang le P, et al. Development of genotype-specific primers for differentiation of genotypes A and B of Aichi viruses. J Virol Methods. 2009;156:107–10.
  17. Oberste  MS, Maher  K, Kilpatrick  DR, Pallansch  MA. Molecular evolution of the human enteroviruses: correlation of serotype with VP1 sequence and application to picornavirus classification. J Virol. 1999;73:19418 .PubMedGoogle Scholar
  18. Lodder  WJ, de Roda Husman  AM. Presence of noroviruses and other enteric viruses in sewage and surface waters in the Netherlands. Appl Environ Microbiol. 2005;71:145361. DOIPubMedGoogle Scholar
  19. Sdiri-Loulizi  K, Hassine  M, Aouni  Z, Gharbi-Khelifi  H, Sakly  N, Chouchane  S, First molecular detection of Aichi virus in sewage and shellfish samples in the Monastir region of Tunisia. Arch Virol. 2010;155:150913. DOIPubMedGoogle Scholar
  20. Alcalá  A, Vizzi  E, Rodriguez-Diaz  J, Zambrano  JL, Betancourt  W, Liprandi  F. Molecular detection and characterization of Aichi viruses in sewage-polluted waters of Venezuela. Appl Environ Microbiol. 2010;76:41135. DOIPubMedGoogle Scholar
  21. Kitajima  M, Haramoto  E, Phanuwan  C, Katayama  H. Prevalence and genetic diversity of Aichi viruses in wastewater and river water in Japan. Appl Environ Microbiol. 2011;77:21847. DOIPubMedGoogle Scholar
  22. Lodder  WJ, Buisman  AM, Rutjes  SA, Heijne  JC, Teunis  PF, de Roda Husman  AM. Feasibility of quantitative environmental surveillance in poliovirus eradication strategies. Appl Environ Microbiol. 2012;78:38005. DOIPubMedGoogle Scholar
  23. Hovi  T, Shulman  LM, van der Avoort  H, Deshpande  J, Roivainen  M, De Gourville  EM. Role of environmental poliovirus surveillance in global polio eradication and beyond. Epidemiol Infect. 2012;140:113. DOIPubMedGoogle Scholar
  24. Rutjes  SA, Italiaander  R, van den Berg  HH, Lodder  WJ, de Roda Husman  AM. Isolation and detection of enterovirus RNA from large-volume water samples by using the NucliSens miniMAG system and real-time nucleic acid sequence-based amplification. Appl Environ Microbiol. 2005;71:373440. DOIPubMedGoogle Scholar
  25. Skraber  S, Italiaander  R, Lodder  W, de Roda Husman  AM. Noroviruses in archival samples. Emerg Infect Dis. 2005;11:48991. DOIPubMedGoogle Scholar
  26. Lodder  WJ, van den Berg  HH, Rutjes  SA, de Roda Husman  AM. Presence of enteric viruses in source waters for drinking water production in the Netherlands. Appl Environ Microbiol. 2010;76:596571. DOIPubMedGoogle Scholar
  27. Katoh  K, Toh  H. Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework. BMC Bioinformatics. 2008;9:212. DOIPubMedGoogle Scholar
  28. Drummond  AJ, Rambaut  A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 2007;7:214. DOIPubMedGoogle Scholar
  29. Strimmer  K, Pybus  OG. Exploring the demographic history of DNA sequences using the generalized skyline plot. Mol Biol Evol. 2001;18:2298305. DOIPubMedGoogle Scholar
  30. Drummond  AJ, Rambaut  A, Shapiro  B, Pybus  OG. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol Biol Evol. 2005;22:118592. DOIPubMedGoogle Scholar
  31. Verma  H, Chitambar  SD, Gopalkrishna  V. Circulation of Aichi virus genotype B strains in children with acute gastroenteritis in India. Epidemiol Infect. 2011;139:168791. DOIPubMedGoogle Scholar
  32. Schijven  JF, Teunis  PF, Rutjes  SA, Bouwknegt  M, de Roda Husman  AM. QMRAspot: a tool for quantitative microbial risk assessment from surface water to potable water. Water Res. 2011;45:556476. DOIPubMedGoogle Scholar
  33. Lukashev  AN, Drexler  JF, Belalov  IS, Eschbach-Bludau  M, Baumgarte  S, Drosten  C. Genetic variation and recombination in Aichi virus. J Gen Virol. 2012;93:122635. DOIPubMedGoogle Scholar
  34. Bibby  K, Viau  E, Peccia  J. Viral metagenome analysis to guide human pathogen monitoring in environmental samples. Lett Appl Microbiol. 2011;52:38692. DOIPubMedGoogle Scholar
  35. Cantalupo  PG, Calgua  B, Zhao  G, Hundesa  A, Wier  AD, Katz  JP, Raw sewage harbors diverse viral populations. mBio. 2011;2:pii:e00180-11.
  36. Chang  JT, Chen  YS, Chen  BC, Chao  D, Chang  TH. Complete genome sequence of the first Aichi virus isolated in Taiwan. Genome Announc. 2013;1:e0010712.PubMedGoogle Scholar
  37. Kapoor  A, Simmonds  P, Dubovi  EJ, Qaisar  N, Henriquez  JA, Medina  J, Characterization of a canine homolog of human Aichivirus. J Virol. 2011;85:115205. DOIPubMedGoogle Scholar
  38. Li  L, Pesavento  PA, Shan  T, Leutenegger  CM, Wang  C, Delwart  E. Viruses in diarrhoeic dogs include novel kobuviruses and sapoviruses. J Gen Virol. 2011;92:253441. DOIPubMedGoogle Scholar

Main Article

Page created: July 19, 2013
Page updated: July 19, 2013
Page reviewed: July 19, 2013
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external