Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link

Disclaimer: Early release articles are not considered as final versions. Any changes will be reflected in the online version in the month the article is officially released.

Volume 31, Number 7—July 2025

Research

Persistence of SARS-CoV-2 Alpha Variant in White-Tailed Deer, Ohio, USA

Natalie N. Tarbuck1, Sofya K. Garushyants1, Dillon S. McBride, Patricia M. Dennis, John Franks, Karlie Woodard, Austin Shamblin, Michael G. Sovic, Derek T. Collins, Kyle Van Why, Richard J. Webby, Martha I. Nelson, and Andrew S. BowmanComments to Author 
Author affiliation: The Ohio State University, Columbus, Ohio, USA (N.N. Tarbuck, D.S. McBride, P.M. Dennis, A. Shamblin, M.G. Sovic, A.S. Bowman); National Institutes of Health, Bethesda, Maryland, USA (S.K. Garushyants, M.I. Nelson); Cleveland Metroparks Zoo, Cleveland, Ohio, USA (P.M. Dennis); St. Jude Children's Research Hospital, Memphis, Tennessee, USA (J. Franks, K. Woodard, R.J. Webby); Animal and Plant Health Inspection Service, Fort Collins, Colorado, USA (D.T. Collins); Animal and Plant Health Inspection Service, Harrisburg, Pennsylvania, USA (K. Van Why).

Main Article

Table

SARS-CoV-2 whole genome sequences generated for a study on the persistence of SARS-CoV-2 Alpha variant in white-tailed deer, Ohio, USA

Strain name Region Pangolin lineage (17) Date Cluster
SC2/deer/USA/OH-OSU-COV0045057/2023 R6 B.1.1.7 2023 Jan 26 Alpha cluster
SC2/deer/USA/OH-OSU-COV0045054/2023 R6 B.1.1.7 2023 Jan 26 Alpha cluster
SC2/deer/USA/OH-OSU-COV0045056/2023 R6 B.1.1.7 2023 Jan 26 Alpha cluster
SC2/deer/USA/OH-OSU-COV0045058/2023 R6 B.1.1.7 2023 Jan 26 Alpha cluster
SC2/deer/USA/OH-OSU-COV0045967/2023 R6 B.1.1.7 2023 Jan 26 Alpha cluster
SC2/deer/USA/OH-OSU-COV0054305/2023 R1 XBB.1.5.35 2023 Feb 23 Omicron cluster 1
SC2/deer/USA/OH-OSU-COV0054309/2023 R1 XBB.1.5.35 2023 Feb 23 Omicron cluster 1
SC2/deer/USA/OH-OSU-COV0054308/2023 R1 XBB.1.5.35 2023 Feb 23 Omicron cluster 1
SC2/deer/USA/OH-OSU-COV0054313/2023 R1 XBB.1.5.35 2023 Feb 23 Omicron cluster 1
SC2/deer/USA/OH-OSU-COV0054303/2023 R1 XBB.1.5.35 2023 Feb 23 Omicron cluster 1
SC2/deer/USA/OH-OSU-COV0054306/2023 R1 XBB.1.5.35 2023 Feb 23 Omicron cluster 1
SC2/deer/USA/OH-OSU-COV0054343/2023 R9 XBB.1.5.35 2023 Feb 27 Omicron cluster 1
SC2/deer/USA/OH-OSU-COV0054342/2023 R9 XBB.1.5.35 2023 Feb 27 Omicron cluster 1
SC2/deer/USA/OH-OSU-COV0060785/2023 R1 XBB.1.5.35 2023 Mar 9 Omicron cluster 1
SC2/deer/USA/OH-OSU-COV0060778/2023 R1 XBB.1.5.35 2023 Mar 9 Omicron cluster 1
SC2/deer/USA/OH-OSU-COV0060777/2023 R1 XBB.1.5.35 2023 Mar 9 Omicron cluster 1
SC2/deer/USA/OH-OSU-COV0060782/2023 R1 XBB.1.5.35 2023 Mar 9 Omicron cluster 1
SC2/deer/USA/OH-OSU-COV0060781/2023 R1 XBB.1.5.35 2023 Mar 9 Omicron cluster 1
SC2/deer/USA/OH-OSU-COV0060793/2023 R1 XBB.1.5.35 2023 Mar 9 Omicron cluster 1
SC2/deer/USA/OH-OSU-COV0045880/2023 R9 BQ.1.1 2023 Jan 30 Omicron cluster 2
SC2/deer/USA/OH-OSU-COV0045866/2023 R9 BQ.1.1 2023 Jan 30 Omicron cluster 2
SC2/deer/USA/OH-OSU-COV0045876/2023 R9 BQ.1.1 2023 Jan 30 Omicron cluster 2
SC2/deer/USA/OH-OSU-COV0045889/2023 R9 BQ.1.1 2023 Jan 30 Omicron cluster 2
SC2/deer/USA/OH-OSU-COV0045870/2023 R9 BQ.1.1 2023 Jan 30 Omicron cluster 2
SC2/deer/USA/OH-OSU-COV0045877/2023 R9 BQ.1.1 2023 Jan 30 Omicron cluster 2
SC2/deer/USA/OH-OSU-COV0045873/2023 R9 BQ.1.1.67 2023 Jan 30 Omicron cluster 2
SC2/deer/USA/OH-OSU-COV0045874/2023 R9 BQ.1.1.67 2023 Jan 30 Omicron cluster 2
SC2/deer/USA/OH-OSU-COV0045887/2023 R9 BQ.1.1 2023 Jan 30 Omicron cluster 2
SC2/deer/USA/OH-OSU-COV0045890/2023 R9 BQ.1.1 2023 Jan 30 Omicron cluster 2
SC2/deer/USA/OH-OSU-COV0054341/2023 R9 BQ.1.1.67 2023 Feb 27 Omicron cluster 2
SC2/deer/USA/OH-OSU-COV0054302/2023 R9 BQ.1.1 2023 Feb 27 Omicron cluster 2
SC2/deer/USA/OH-OSU-COV0060771/2023 R5 BQ.1.1 2023 Mar 13 Omicron cluster 2
SC2/deer/USA/OH-OSU-COV0060768/2023 R5 BQ.1.1 2023 Mar 13 Omicron cluster 2
SC2/deer/USA/OH-OSU-COV0060769/2023 R5 BQ.1.1 2023 Mar 13 Omicron cluster 2
SC2/deer/USA/OH-OSU-COV0045465/2023 R5 BQ.1.23 2023 Jan 25 Omicron singleton 1
SC2/deer/USA/OH-OSU-COV0054384/2023 R5 BQ.1.1.63 2023 Feb 13 Omicron singleton 2

Main Article

References
  1. Animal and Plant Health Inspection Service. SARS-CoV-2 in animals [cited 2024 Oct 24]. https://www.aphis.usda.gov/sars-cov-2
  2. Wei  C, Shan  KJ, Wang  W, Zhang  S, Huan  Q, Qian  W. Evidence for a mouse origin of the SARS-CoV-2 Omicron variant. J Genet Genomics. 2021;48:111121. DOIPubMedGoogle Scholar
  3. Sun  Y, Lin  W, Dong  W, Xu  J. Origin and evolutionary analysis of the SARS-CoV-2 Omicron variant. J Biosaf Biosecur. 2022;4:337. DOIPubMedGoogle Scholar
  4. Caserta  LC, Martins  M, Butt  SL, Hollingshead  NA, Covaleda  LM, Ahmed  S, et al. White-tailed deer (Odocoileus virginianus) may serve as a wildlife reservoir for nearly extinct SARS-CoV-2 variants of concern. Proc Natl Acad Sci U S A. 2023;120:e2215067120. DOIPubMedGoogle Scholar
  5. Hale  VL, Dennis  PM, McBride  DS, Nolting  JM, Madden  C, Huey  D, et al. SARS-CoV-2 infection in free-ranging white-tailed deer. Nature. 2022;602:4816. DOIPubMedGoogle Scholar
  6. Marques  AD, Sherrill-Mix  S, Everett  JK, Adhikari  H, Reddy  S, Ellis  JC, et al. Multiple introductions of SARS-CoV-2 Alpha and Delta variants into white-tailed deer in Pennsylvania. MBio. 2022;13:e0210122. DOIPubMedGoogle Scholar
  7. Kuchipudi  SV, Surendran-Nair  M, Ruden  RM, Yon  M, Nissly  RH, Vandegrift  KJ, et al. Multiple spillovers from humans and onward transmission of SARS-CoV-2 in white-tailed deer. Proc Natl Acad Sci U S A. 2022;119:e2121644119. DOIPubMedGoogle Scholar
  8. Pickering  B, Lung  O, Maguire  F, Kruczkiewicz  P, Kotwa  JD, Buchanan  T, et al. Divergent SARS-CoV-2 variant emerges in white-tailed deer with deer-to-human transmission. Nat Microbiol. 2022;7:201124. DOIPubMedGoogle Scholar
  9. Feng  A, Bevins  S, Chandler  J, DeLiberto  TJ, Ghai  R, Lantz  K, et al. Transmission of SARS-CoV-2 in free-ranging white-tailed deer in the United States. Nat Commun. 2023;14:4078. DOIPubMedGoogle Scholar
  10. Vandegrift  KJ, Yon  M, Surendran Nair  M, Gontu  A, Ramasamy  S, Amirthalingam  S, et al. SARS-CoV-2 Omicron (B.1.1.529) infection of wild white-tailed deer in New York City. Viruses. 2022;14:2770. DOIPubMedGoogle Scholar
  11. McBride  DS, Garushyants  SK, Franks  J, Magee  AF, Overend  SH, Huey  D, et al. Accelerated evolution of SARS-CoV-2 in free-ranging white-tailed deer. Nat Commun. 2023;14:5105. DOIPubMedGoogle Scholar
  12. Association of Fish and Wildlife Agencies. Methods for managing deer in populated areas. 2018 [cited 2024 Dec 12]. https://www.fishwildlife.org/application/files/7315/3745/9637/AFWA_Deer_Mngmt_Pop_Areas_August_31_2018_version.pdf
  13. United States Fish and Wildlife Service. Fishing and hunting recruitment, retention, and reactivation in the U.S. September 2024 [cited 2024 Dec 12] https://www.fws.gov/sites/default/files/documents/2024-09/2022-fishing-and-hunting-r3-in-the-us.pdf
  14. Chen  S. Ultrafast one-pass FASTQ data preprocessing, quality control, and deduplication using fastp. iMeta. 2023;2:e107. DOIPubMedGoogle Scholar
  15. Grubaugh  ND, Gangavarapu  K, Quick  J, Matteson  NL, De Jesus  JG, Main  BJ, et al. An amplicon-based sequencing framework for accurately measuring intrahost virus diversity using PrimalSeq and iVar. Genome Biol. 2019;20:8. DOIPubMedGoogle Scholar
  16. O’Toole  Á, Scher  E, Underwood  A, Jackson  B, Hill  V, McCrone  JT, et al. Assignment of epidemiological lineages in an emerging pandemic using the pangolin tool. Virus Evol. 2021;7:veab064. DOIPubMedGoogle Scholar
  17. Minh  BQ, Schmidt  HA, Chernomor  O, Schrempf  D, Woodhams  MD, von Haeseler  A, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37:15304. DOIPubMedGoogle Scholar
  18. Turakhia  Y, Thornlow  B, Hinrichs  AS, De Maio  N, Gozashti  L, Lanfear  R, et al. Ultrafast Sample placement on Existing tRees (UShER) enables real-time phylogenetics for the SARS-CoV-2 pandemic. Nat Genet. 2021;53:80916. DOIPubMedGoogle Scholar
  19. Sagulenko  P, Puller  V, Neher  RA. TreeTime: Maximum-likelihood phylodynamic analysis. Virus Evol. 2018;4:vex042. DOIPubMedGoogle Scholar
  20. Meng  EC, Goddard  TD, Pettersen  EF, Couch  GS, Pearson  ZJ, Morris  JH, et al. UCSF ChimeraX: Tools for structure building and analysis. Protein Sci. 2023;32:e4792. DOIPubMedGoogle Scholar
  21. Huerta-Cepas  J, Serra  F, Bork  P. ETE 3: Reconstruction, analysis, and visualization of phylogenomic data. Mol Biol Evol. 2016;33:16358. DOIPubMedGoogle Scholar
  22. Suchard  MA, Lemey  P, Baele  G, Ayres  DL, Drummond  AJ, Rambaut  A. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 2018;4:vey016. DOIPubMedGoogle Scholar
  23. Worobey  M, Han  GZ, Rambaut  A. A synchronized global sweep of the internal genes of modern avian influenza virus. Nature. 2014;508:2547. DOIPubMedGoogle Scholar
  24. Gill  MS, Lemey  P, Faria  NR, Rambaut  A, Shapiro  B, Suchard  MA. Improving Bayesian population dynamics inference: a coalescent-based model for multiple loci. Mol Biol Evol. 2013;30:71324. DOIPubMedGoogle Scholar
  25. Ayres  DL, Cummings  MP, Baele  G, Darling  AE, Lewis  PO, Swofford  DL, et al. BEAGLE 3: Improved performance, scaling, and usability for a high-performance computing library for statistical phylogenetics. Syst Biol. 2019;68:105261. DOIPubMedGoogle Scholar
  26. Rambaut  A, Drummond  AJ, Xie  D, Baele  G, Suchard  MA. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Syst Biol. 2018;67:9014. DOIPubMedGoogle Scholar
  27. Lemey  P, Rambaut  A, Drummond  AJ, Suchard  MA. Bayesian phylogeography finds its roots. PLOS Comput Biol. 2009;5:e1000520. DOIPubMedGoogle Scholar
  28. Minin  VN, Suchard  MA. Counting labeled transitions in continuous-time Markov models of evolution. J Math Biol. 2008;56:391412. DOIPubMedGoogle Scholar
  29. Lemey  P, Rambaut  A, Bedford  T, Faria  N, Bielejec  F, Baele  G, et al. Unifying viral genetics and human transportation data to predict the global transmission dynamics of human influenza H3N2. PLoS Pathog. 2014;10:e1003932. DOIPubMedGoogle Scholar
  30. McCallum  M, De Marco  A, Lempp  FA, Tortorici  MA, Pinto  D, Walls  AC, et al. N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. Cell. 2021;184:23322347.e16. DOIPubMedGoogle Scholar
  31. Goldberg  AR, Langwig  KE, Brown  KL, Marano  JM, Rai  P, King  KM, et al. Widespread exposure to SARS-CoV-2 in wildlife communities. Nat Commun. 2024;15:6210. DOIPubMedGoogle Scholar

Main Article

1These authors contributed equally to this article.

Page created: May 13, 2025
Page updated: June 03, 2025
Page reviewed: June 03, 2025
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external