Disclaimer: Early release articles are not considered as final versions. Any changes will be reflected in the online version in the month the article is officially released.
Volume 31, Number 7—July 2025
Research
Persistence of SARS-CoV-2 Alpha Variant in White-Tailed Deer, Ohio, USA
Table
SARS-CoV-2 whole genome sequences generated for a study on the persistence of SARS-CoV-2 Alpha variant in white-tailed deer, Ohio, USA
Strain name | Region | Pangolin lineage (17) | Date | Cluster |
---|---|---|---|---|
SC2/deer/USA/OH-OSU-COV0045057/2023 | R6 | B.1.1.7 | 2023 Jan 26 | Alpha cluster |
SC2/deer/USA/OH-OSU-COV0045054/2023 | R6 | B.1.1.7 | 2023 Jan 26 | Alpha cluster |
SC2/deer/USA/OH-OSU-COV0045056/2023 | R6 | B.1.1.7 | 2023 Jan 26 | Alpha cluster |
SC2/deer/USA/OH-OSU-COV0045058/2023 | R6 | B.1.1.7 | 2023 Jan 26 | Alpha cluster |
SC2/deer/USA/OH-OSU-COV0045967/2023 | R6 | B.1.1.7 | 2023 Jan 26 | Alpha cluster |
SC2/deer/USA/OH-OSU-COV0054305/2023 | R1 | XBB.1.5.35 | 2023 Feb 23 | Omicron cluster 1 |
SC2/deer/USA/OH-OSU-COV0054309/2023 | R1 | XBB.1.5.35 | 2023 Feb 23 | Omicron cluster 1 |
SC2/deer/USA/OH-OSU-COV0054308/2023 | R1 | XBB.1.5.35 | 2023 Feb 23 | Omicron cluster 1 |
SC2/deer/USA/OH-OSU-COV0054313/2023 | R1 | XBB.1.5.35 | 2023 Feb 23 | Omicron cluster 1 |
SC2/deer/USA/OH-OSU-COV0054303/2023 | R1 | XBB.1.5.35 | 2023 Feb 23 | Omicron cluster 1 |
SC2/deer/USA/OH-OSU-COV0054306/2023 | R1 | XBB.1.5.35 | 2023 Feb 23 | Omicron cluster 1 |
SC2/deer/USA/OH-OSU-COV0054343/2023 | R9 | XBB.1.5.35 | 2023 Feb 27 | Omicron cluster 1 |
SC2/deer/USA/OH-OSU-COV0054342/2023 | R9 | XBB.1.5.35 | 2023 Feb 27 | Omicron cluster 1 |
SC2/deer/USA/OH-OSU-COV0060785/2023 | R1 | XBB.1.5.35 | 2023 Mar 9 | Omicron cluster 1 |
SC2/deer/USA/OH-OSU-COV0060778/2023 | R1 | XBB.1.5.35 | 2023 Mar 9 | Omicron cluster 1 |
SC2/deer/USA/OH-OSU-COV0060777/2023 | R1 | XBB.1.5.35 | 2023 Mar 9 | Omicron cluster 1 |
SC2/deer/USA/OH-OSU-COV0060782/2023 | R1 | XBB.1.5.35 | 2023 Mar 9 | Omicron cluster 1 |
SC2/deer/USA/OH-OSU-COV0060781/2023 | R1 | XBB.1.5.35 | 2023 Mar 9 | Omicron cluster 1 |
SC2/deer/USA/OH-OSU-COV0060793/2023 | R1 | XBB.1.5.35 | 2023 Mar 9 | Omicron cluster 1 |
SC2/deer/USA/OH-OSU-COV0045880/2023 | R9 | BQ.1.1 | 2023 Jan 30 | Omicron cluster 2 |
SC2/deer/USA/OH-OSU-COV0045866/2023 | R9 | BQ.1.1 | 2023 Jan 30 | Omicron cluster 2 |
SC2/deer/USA/OH-OSU-COV0045876/2023 | R9 | BQ.1.1 | 2023 Jan 30 | Omicron cluster 2 |
SC2/deer/USA/OH-OSU-COV0045889/2023 | R9 | BQ.1.1 | 2023 Jan 30 | Omicron cluster 2 |
SC2/deer/USA/OH-OSU-COV0045870/2023 | R9 | BQ.1.1 | 2023 Jan 30 | Omicron cluster 2 |
SC2/deer/USA/OH-OSU-COV0045877/2023 | R9 | BQ.1.1 | 2023 Jan 30 | Omicron cluster 2 |
SC2/deer/USA/OH-OSU-COV0045873/2023 | R9 | BQ.1.1.67 | 2023 Jan 30 | Omicron cluster 2 |
SC2/deer/USA/OH-OSU-COV0045874/2023 | R9 | BQ.1.1.67 | 2023 Jan 30 | Omicron cluster 2 |
SC2/deer/USA/OH-OSU-COV0045887/2023 | R9 | BQ.1.1 | 2023 Jan 30 | Omicron cluster 2 |
SC2/deer/USA/OH-OSU-COV0045890/2023 | R9 | BQ.1.1 | 2023 Jan 30 | Omicron cluster 2 |
SC2/deer/USA/OH-OSU-COV0054341/2023 | R9 | BQ.1.1.67 | 2023 Feb 27 | Omicron cluster 2 |
SC2/deer/USA/OH-OSU-COV0054302/2023 | R9 | BQ.1.1 | 2023 Feb 27 | Omicron cluster 2 |
SC2/deer/USA/OH-OSU-COV0060771/2023 | R5 | BQ.1.1 | 2023 Mar 13 | Omicron cluster 2 |
SC2/deer/USA/OH-OSU-COV0060768/2023 | R5 | BQ.1.1 | 2023 Mar 13 | Omicron cluster 2 |
SC2/deer/USA/OH-OSU-COV0060769/2023 | R5 | BQ.1.1 | 2023 Mar 13 | Omicron cluster 2 |
SC2/deer/USA/OH-OSU-COV0045465/2023 | R5 | BQ.1.23 | 2023 Jan 25 | Omicron singleton 1 |
SC2/deer/USA/OH-OSU-COV0054384/2023 | R5 | BQ.1.1.63 | 2023 Feb 13 | Omicron singleton 2 |
References
- Animal and Plant Health Inspection Service. SARS-CoV-2 in animals [cited 2024 Oct 24]. https://www.aphis.usda.gov/sars-cov-2
- Wei C, Shan KJ, Wang W, Zhang S, Huan Q, Qian W. Evidence for a mouse origin of the SARS-CoV-2 Omicron variant. J Genet Genomics. 2021;48:1111–21. DOIPubMedGoogle Scholar
- Sun Y, Lin W, Dong W, Xu J. Origin and evolutionary analysis of the SARS-CoV-2 Omicron variant. J Biosaf Biosecur. 2022;4:33–7. DOIPubMedGoogle Scholar
- Caserta LC, Martins M, Butt SL, Hollingshead NA, Covaleda LM, Ahmed S, et al. White-tailed deer (Odocoileus virginianus) may serve as a wildlife reservoir for nearly extinct SARS-CoV-2 variants of concern. Proc Natl Acad Sci U S A. 2023;120:
e2215067120 . DOIPubMedGoogle Scholar - Hale VL, Dennis PM, McBride DS, Nolting JM, Madden C, Huey D, et al. SARS-CoV-2 infection in free-ranging white-tailed deer. Nature. 2022;602:481–6. DOIPubMedGoogle Scholar
- Marques AD, Sherrill-Mix S, Everett JK, Adhikari H, Reddy S, Ellis JC, et al. Multiple introductions of SARS-CoV-2 Alpha and Delta variants into white-tailed deer in Pennsylvania. MBio. 2022;13:
e0210122 . DOIPubMedGoogle Scholar - Kuchipudi SV, Surendran-Nair M, Ruden RM, Yon M, Nissly RH, Vandegrift KJ, et al. Multiple spillovers from humans and onward transmission of SARS-CoV-2 in white-tailed deer. Proc Natl Acad Sci U S A. 2022;119:
e2121644119 . DOIPubMedGoogle Scholar - Pickering B, Lung O, Maguire F, Kruczkiewicz P, Kotwa JD, Buchanan T, et al. Divergent SARS-CoV-2 variant emerges in white-tailed deer with deer-to-human transmission. Nat Microbiol. 2022;7:2011–24. DOIPubMedGoogle Scholar
- Feng A, Bevins S, Chandler J, DeLiberto TJ, Ghai R, Lantz K, et al. Transmission of SARS-CoV-2 in free-ranging white-tailed deer in the United States. Nat Commun. 2023;14:4078. DOIPubMedGoogle Scholar
- Vandegrift KJ, Yon M, Surendran Nair M, Gontu A, Ramasamy S, Amirthalingam S, et al. SARS-CoV-2 Omicron (B.1.1.529) infection of wild white-tailed deer in New York City. Viruses. 2022;14:2770. DOIPubMedGoogle Scholar
- McBride DS, Garushyants SK, Franks J, Magee AF, Overend SH, Huey D, et al. Accelerated evolution of SARS-CoV-2 in free-ranging white-tailed deer. Nat Commun. 2023;14:5105. DOIPubMedGoogle Scholar
- Association of Fish and Wildlife Agencies. Methods for managing deer in populated areas. 2018 [cited 2024 Dec 12]. https://www.fishwildlife.org/application/files/7315/3745/9637/AFWA_Deer_Mngmt_Pop_Areas_August_31_2018_version.pdf
- United States Fish and Wildlife Service. Fishing and hunting recruitment, retention, and reactivation in the U.S. September 2024 [cited 2024 Dec 12] https://www.fws.gov/sites/default/files/documents/2024-09/2022-fishing-and-hunting-r3-in-the-us.pdf
- Chen S. Ultrafast one-pass FASTQ data preprocessing, quality control, and deduplication using fastp. iMeta. 2023;2:
e107 . DOIPubMedGoogle Scholar - Grubaugh ND, Gangavarapu K, Quick J, Matteson NL, De Jesus JG, Main BJ, et al. An amplicon-based sequencing framework for accurately measuring intrahost virus diversity using PrimalSeq and iVar. Genome Biol. 2019;20:8. DOIPubMedGoogle Scholar
- O’Toole Á, Scher E, Underwood A, Jackson B, Hill V, McCrone JT, et al. Assignment of epidemiological lineages in an emerging pandemic using the pangolin tool. Virus Evol. 2021;7:
veab064 . DOIPubMedGoogle Scholar - Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37:1530–4. DOIPubMedGoogle Scholar
- Turakhia Y, Thornlow B, Hinrichs AS, De Maio N, Gozashti L, Lanfear R, et al. Ultrafast Sample placement on Existing tRees (UShER) enables real-time phylogenetics for the SARS-CoV-2 pandemic. Nat Genet. 2021;53:809–16. DOIPubMedGoogle Scholar
- Sagulenko P, Puller V, Neher RA. TreeTime: Maximum-likelihood phylodynamic analysis. Virus Evol. 2018;4:
vex042 . DOIPubMedGoogle Scholar - Meng EC, Goddard TD, Pettersen EF, Couch GS, Pearson ZJ, Morris JH, et al. UCSF ChimeraX: Tools for structure building and analysis. Protein Sci. 2023;32:
e4792 . DOIPubMedGoogle Scholar - Huerta-Cepas J, Serra F, Bork P. ETE 3: Reconstruction, analysis, and visualization of phylogenomic data. Mol Biol Evol. 2016;33:1635–8. DOIPubMedGoogle Scholar
- Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 2018;4:
vey016 . DOIPubMedGoogle Scholar - Worobey M, Han GZ, Rambaut A. A synchronized global sweep of the internal genes of modern avian influenza virus. Nature. 2014;508:254–7. DOIPubMedGoogle Scholar
- Gill MS, Lemey P, Faria NR, Rambaut A, Shapiro B, Suchard MA. Improving Bayesian population dynamics inference: a coalescent-based model for multiple loci. Mol Biol Evol. 2013;30:713–24. DOIPubMedGoogle Scholar
- Ayres DL, Cummings MP, Baele G, Darling AE, Lewis PO, Swofford DL, et al. BEAGLE 3: Improved performance, scaling, and usability for a high-performance computing library for statistical phylogenetics. Syst Biol. 2019;68:1052–61. DOIPubMedGoogle Scholar
- Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Syst Biol. 2018;67:901–4. DOIPubMedGoogle Scholar
- Lemey P, Rambaut A, Drummond AJ, Suchard MA. Bayesian phylogeography finds its roots. PLOS Comput Biol. 2009;5:
e1000520 . DOIPubMedGoogle Scholar - Minin VN, Suchard MA. Counting labeled transitions in continuous-time Markov models of evolution. J Math Biol. 2008;56:391–412. DOIPubMedGoogle Scholar
- Lemey P, Rambaut A, Bedford T, Faria N, Bielejec F, Baele G, et al. Unifying viral genetics and human transportation data to predict the global transmission dynamics of human influenza H3N2. PLoS Pathog. 2014;10:
e1003932 . DOIPubMedGoogle Scholar - McCallum M, De Marco A, Lempp FA, Tortorici MA, Pinto D, Walls AC, et al. N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. Cell. 2021;184:2332–2347.e16. DOIPubMedGoogle Scholar
- Goldberg AR, Langwig KE, Brown KL, Marano JM, Rai P, King KM, et al. Widespread exposure to SARS-CoV-2 in wildlife communities. Nat Commun. 2024;15:6210. DOIPubMedGoogle Scholar
1These authors contributed equally to this article.
Page created: May 13, 2025
Page updated: June 03, 2025
Page reviewed: June 03, 2025
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.