Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Issue Cover for Volume 21, Number 12—December 2015

Volume 21, Number 12—December 2015

[PDF - 8.07 MB - 184 pages]

Synopses

Identifying and Reducing Remaining Stocks of Rinderpest Virus [PDF - 330 KB - 7 pages]
K. Hamilton et al.

In 2011, the world was declared free from rinderpest, one of the most feared and devastating infectious diseases of animals. Rinderpest is the second infectious disease, after smallpox, to have been eradicated. However, potentially infectious rinderpest virus material remains widely disseminated among research and diagnostic facilities across the world and poses a risk for disease recurrence should it be released. Member Countries of the World Organisation for Animal Health and the Food and Agricultural Organization of the United Nations are committed to destroying remaining stocks of infectious material or ensuring that it is stored under international supervision in a limited number of approved facilities. To facilitate this commitment and maintain global freedom from rinderpest, World Organisation for Animal Health Member Countries must report annually on rinderpest material held in their countries. The first official surveys, conducted during 2013–2015, revealed that rinderpest material was stored in an unacceptably high number of facilities and countries.

EID Hamilton K, Visser D, Evans B, Vallat B. Identifying and Reducing Remaining Stocks of Rinderpest Virus. Emerg Infect Dis. 2015;21(12):2117-2121. https://dx.doi.org/10.3201/eid2112.150227
AMA Hamilton K, Visser D, Evans B, et al. Identifying and Reducing Remaining Stocks of Rinderpest Virus. Emerging Infectious Diseases. 2015;21(12):2117-2121. doi:10.3201/eid2112.150227.
APA Hamilton, K., Visser, D., Evans, B., & Vallat, B. (2015). Identifying and Reducing Remaining Stocks of Rinderpest Virus. Emerging Infectious Diseases, 21(12), 2117-2121. https://dx.doi.org/10.3201/eid2112.150227.

Opportunistic Pulmonary Bordetella hinzii Infection after Avian Exposure [PDF - 396 KB - 5 pages]
A. Fabre et al.

We report 2 cases of pulmonary Bordetella hinzii infection in immunodeficient patients. One of these rare cases demonstrated the potential transmission of the bacteria from an avian reservoir through occupational exposure and its persistence in humans. We establish bacteriologic management of these infections and suggest therapeutic options if needed.

EID Fabre A, Dupin C, Bénézit F, Goret J, Piau C, Jouneau S, et al. Opportunistic Pulmonary Bordetella hinzii Infection after Avian Exposure. Emerg Infect Dis. 2015;21(12):2122-2126. https://dx.doi.org/10.3201/eid2112.150400
AMA Fabre A, Dupin C, Bénézit F, et al. Opportunistic Pulmonary Bordetella hinzii Infection after Avian Exposure. Emerging Infectious Diseases. 2015;21(12):2122-2126. doi:10.3201/eid2112.150400.
APA Fabre, A., Dupin, C., Bénézit, F., Goret, J., Piau, C., Jouneau, S....Guiso, N. (2015). Opportunistic Pulmonary Bordetella hinzii Infection after Avian Exposure. Emerging Infectious Diseases, 21(12), 2122-2126. https://dx.doi.org/10.3201/eid2112.150400.
Research

Zoonotic Leprosy in the Southeastern United States [PDF - 578 KB - 8 pages]
R. Sharma et al.

Nine-banded armadillos (Dasypus novemcinctus) are naturally infected with Mycobacterium leprae and have been implicated in zoonotic transmission of leprosy. Early studies found this disease mainly in Texas and Louisiana, but armadillos in the southeastern United States appeared to be free of infection. We screened 645 armadillos from 8 locations in the southeastern United States not known to harbor enzootic leprosy for M. leprae DNA and antibodies. We found M. leprae–infected armadillos at each location, and 106 (16.4%) animals had serologic/PCR evidence of infection. Using single-nucleotide polymorphism variable number tandem repeat genotyping/genome sequencing, we detected M. leprae genotype 3I-2-v1 among 35 armadillos. Seven armadillos harbored a newly identified genotype (3I-2-v15). In comparison, 52 human patients from the same region were infected with 31 M. leprae types. However, 42.3% (22/52) of patients were infected with 1 of the 2 M. leprae genotype strains associated with armadillos. The geographic range and complexity of zoonotic leprosy is expanding.

EID Sharma R, Singh P, Loughry W, Lockhart J, Inman W, Duthie MS, et al. Zoonotic Leprosy in the Southeastern United States. Emerg Infect Dis. 2015;21(12):2127-2134. https://dx.doi.org/10.3201/eid2112.150501
AMA Sharma R, Singh P, Loughry W, et al. Zoonotic Leprosy in the Southeastern United States. Emerging Infectious Diseases. 2015;21(12):2127-2134. doi:10.3201/eid2112.150501.
APA Sharma, R., Singh, P., Loughry, W., Lockhart, J., Inman, W., Duthie, M. S....Truman, R. W. (2015). Zoonotic Leprosy in the Southeastern United States. Emerging Infectious Diseases, 21(12), 2127-2134. https://dx.doi.org/10.3201/eid2112.150501.

Infection Risk for Persons Exposed to Highly Pathogenic Avian Influenza A H5 Virus–Infected Birds, United States, December 2014–March 2015 [PDF - 395 KB - 6 pages]
C. S. Arriola et al.

Newly emerged highly pathogenic avian influenza (HPAI) A H5 viruses have caused outbreaks among birds in the United States. These viruses differ genetically from HPAI H5 viruses that previously caused human illness, most notably in Asia and Africa. To assess the risk for animal-to-human HPAI H5 virus transmission in the United States, we determined the number of persons with self-reported exposure to infected birds, the number with an acute respiratory infection (ARI) during a 10-day postexposure period, and the number with ARI who tested positive for influenza by real-time reverse transcription PCR or serologic testing for each outbreak during December 15, 2014–March 31, 2015. During 60 outbreaks in 13 states, a total of 164 persons were exposed to infected birds. ARI developed in 5 of these persons within 10 days of exposure. H5 influenza virus infection was not identified in any persons with ARI, suggesting a low risk for animal-to-human HPAI H5 virus transmission.

EID Arriola CS, Nelson DI, DeLiberto TJ, Blanton L, Kniss K, Levine MZ, et al. Infection Risk for Persons Exposed to Highly Pathogenic Avian Influenza A H5 Virus–Infected Birds, United States, December 2014–March 2015. Emerg Infect Dis. 2015;21(12):2135-2140. https://dx.doi.org/10.3201/eid2112.150904
AMA Arriola CS, Nelson DI, DeLiberto TJ, et al. Infection Risk for Persons Exposed to Highly Pathogenic Avian Influenza A H5 Virus–Infected Birds, United States, December 2014–March 2015. Emerging Infectious Diseases. 2015;21(12):2135-2140. doi:10.3201/eid2112.150904.
APA Arriola, C. S., Nelson, D. I., DeLiberto, T. J., Blanton, L., Kniss, K., Levine, M. Z....Jhung, M. (2015). Infection Risk for Persons Exposed to Highly Pathogenic Avian Influenza A H5 Virus–Infected Birds, United States, December 2014–March 2015. Emerging Infectious Diseases, 21(12), 2135-2140. https://dx.doi.org/10.3201/eid2112.150904.

High Prevalence of Intermediate Leptospira spp. DNA in Febrile Humans from Urban and Rural Ecuador [PDF - 459 KB - 7 pages]
J. Chiriboga et al.

Leptospira spp., which comprise 3 clusters (pathogenic, saprophytic, and intermediate) that vary in pathogenicity, infect >1 million persons worldwide each year. The disease burden of the intermediate leptospires is unclear. To increase knowledge of this cluster, we used new molecular approaches to characterize Leptospira spp. in 464 samples from febrile patients in rural, semiurban, and urban communities in Ecuador; in 20 samples from nonfebrile persons in the rural community; and in 206 samples from animals in the semiurban community. We observed a higher percentage of leptospiral DNA–positive samples from febrile persons in rural (64%) versus urban (21%) and semiurban (25%) communities; no leptospires were detected in nonfebrile persons. The percentage of intermediate cluster strains in humans (96%) was higher than that of pathogenic cluster strains (4%); strains in animal samples belonged to intermediate (49%) and pathogenic (51%) clusters. Intermediate cluster strains may be causing a substantial amount of fever in coastal Ecuador.

EID Chiriboga J, Barragan V, Arroyo G, Sosa A, Birdsell DN, España K, et al. High Prevalence of Intermediate Leptospira spp. DNA in Febrile Humans from Urban and Rural Ecuador. Emerg Infect Dis. 2015;21(12):2141-2147. https://dx.doi.org/10.3201/eid2112.140659
AMA Chiriboga J, Barragan V, Arroyo G, et al. High Prevalence of Intermediate Leptospira spp. DNA in Febrile Humans from Urban and Rural Ecuador. Emerging Infectious Diseases. 2015;21(12):2141-2147. doi:10.3201/eid2112.140659.
APA Chiriboga, J., Barragan, V., Arroyo, G., Sosa, A., Birdsell, D. N., España, K....Trueba, G. (2015). High Prevalence of Intermediate Leptospira spp. DNA in Febrile Humans from Urban and Rural Ecuador. Emerging Infectious Diseases, 21(12), 2141-2147. https://dx.doi.org/10.3201/eid2112.140659.
Historical Review

Biological Warfare Plan in the 17th Century—the Siege of Candia, 1648–1669 [PDF - 382 KB - 5 pages]
E. Thalassinou et al.

A little-known effort to conduct biological warfare occurred during the 17th century. The incident transpired during the Venetian–Ottoman War, when the city of Candia (now Heraklion, Greece) was under siege by the Ottomans (1648–1669). The data we describe, obtained from the Archives of the Venetian State, are related to an operation organized by the Venetian Intelligence Services, which aimed at lifting the siege by infecting the Ottoman soldiers with plague by attacking them with a liquid made from the spleens and buboes of plague victims. Although the plan was perfectly organized, and the deadly mixture was ready to use, the attack was ultimately never carried out. The conception and the detailed cynical planning of the attack on Candia illustrate a dangerous way of thinking about the use of biological weapons and the absence of reservations when potential users, within their religious framework, cast their enemies as undeserving of humanitarian consideration.

EID Thalassinou E, Tsiamis C, Poulakou-Rebelakou E, Hatzakis A. Biological Warfare Plan in the 17th Century—the Siege of Candia, 1648–1669. Emerg Infect Dis. 2015;21(12):2148-2153. https://dx.doi.org/10.3201/eid2112.130822
AMA Thalassinou E, Tsiamis C, Poulakou-Rebelakou E, et al. Biological Warfare Plan in the 17th Century—the Siege of Candia, 1648–1669. Emerging Infectious Diseases. 2015;21(12):2148-2153. doi:10.3201/eid2112.130822.
APA Thalassinou, E., Tsiamis, C., Poulakou-Rebelakou, E., & Hatzakis, A. (2015). Biological Warfare Plan in the 17th Century—the Siege of Candia, 1648–1669. Emerging Infectious Diseases, 21(12), 2148-2153. https://dx.doi.org/10.3201/eid2112.130822.
Dispatches

Asymptomatic MERS-CoV Infection in Humans Possibly Linked to Infected Dromedaries Imported from Oman to United Arab Emirates, May 2015 [PDF - 485 KB - 4 pages]
Z. M. Al Hammadi et al.

In May 2015 in United Arab Emirates, asymptomatic Middle East respiratory syndrome coronavirus infection was identified through active case finding in 2 men with exposure to infected dromedaries. Epidemiologic and virologic findings suggested zoonotic transmission. Genetic sequences for viruses from the men and camels were similar to those for viruses recently detected in other countries.

EID Al Hammadi ZM, Chu D, Eltahir YM, Al Hosani F, Al Mulla M, Tarnini W, et al. Asymptomatic MERS-CoV Infection in Humans Possibly Linked to Infected Dromedaries Imported from Oman to United Arab Emirates, May 2015. Emerg Infect Dis. 2015;21(12):2197-2200. https://dx.doi.org/10.3201/eid2112.151132
AMA Al Hammadi ZM, Chu D, Eltahir YM, et al. Asymptomatic MERS-CoV Infection in Humans Possibly Linked to Infected Dromedaries Imported from Oman to United Arab Emirates, May 2015. Emerging Infectious Diseases. 2015;21(12):2197-2200. doi:10.3201/eid2112.151132.
APA Al Hammadi, Z. M., Chu, D., Eltahir, Y. M., Al Hosani, F., Al Mulla, M., Tarnini, W....Poon, L. (2015). Asymptomatic MERS-CoV Infection in Humans Possibly Linked to Infected Dromedaries Imported from Oman to United Arab Emirates, May 2015. Emerging Infectious Diseases, 21(12), 2197-2200. https://dx.doi.org/10.3201/eid2112.151132.

Hendra Virus Infection in Dog, Australia, 2013 [PDF - 365 KB - 4 pages]
P. D. Kirkland et al.

Hendra virus occasionally causes severe disease in horses and humans. In Australia in 2013, infection was detected in a dog that had been in contact with an infected horse. Abnormalities and viral RNA were found in the dog’s kidney, brain, lymph nodes, spleen, and liver. Dogs should be kept away from infected horses.

EID Kirkland PD, Gabor M, Poe I, Neale K, Chaffey K, Finlaison DS, et al. Hendra Virus Infection in Dog, Australia, 2013. Emerg Infect Dis. 2015;21(12):2182-2185. https://dx.doi.org/10.3201/eid2112.151324
AMA Kirkland PD, Gabor M, Poe I, et al. Hendra Virus Infection in Dog, Australia, 2013. Emerging Infectious Diseases. 2015;21(12):2182-2185. doi:10.3201/eid2112.151324.
APA Kirkland, P. D., Gabor, M., Poe, I., Neale, K., Chaffey, K., Finlaison, D. S....Middleton, D. (2015). Hendra Virus Infection in Dog, Australia, 2013. Emerging Infectious Diseases, 21(12), 2182-2185. https://dx.doi.org/10.3201/eid2112.151324.

Replication Capacity of Avian Influenza A(H9N2) Virus in Pet Birds and Mammals, Bangladesh [PDF - 456 KB - 4 pages]
B. J. Lenny et al.

Avian influenza A(H9N2) is an agricultural and public health threat. We characterized an H9N2 virus from a pet market in Bangladesh and demonstrated replication in samples from pet birds, swine tissues, human airway and ocular cells, and ferrets. Results implicated pet birds in the potential dissemination and zoonotic transmission of this virus.

EID Lenny BJ, Shanmuganatham K, Sonnberg S, Feeroz MM, Alam S, Hasan M, et al. Replication Capacity of Avian Influenza A(H9N2) Virus in Pet Birds and Mammals, Bangladesh. Emerg Infect Dis. 2015;21(12):2174-2177. https://dx.doi.org/10.3201/eid2112.151152
AMA Lenny BJ, Shanmuganatham K, Sonnberg S, et al. Replication Capacity of Avian Influenza A(H9N2) Virus in Pet Birds and Mammals, Bangladesh. Emerging Infectious Diseases. 2015;21(12):2174-2177. doi:10.3201/eid2112.151152.
APA Lenny, B. J., Shanmuganatham, K., Sonnberg, S., Feeroz, M. M., Alam, S., Hasan, M....Jones, J. C. (2015). Replication Capacity of Avian Influenza A(H9N2) Virus in Pet Birds and Mammals, Bangladesh. Emerging Infectious Diseases, 21(12), 2174-2177. https://dx.doi.org/10.3201/eid2112.151152.

Factors Associated with Severe Leptospirosis, Martinique, 2010–2013 [PDF - 344 KB - 4 pages]
P. Hochedez et al.

To identify factors associated with disease severity, we examined 102 patients with quantitative PCR–confirmed leptospirosis in Martinique during 2010–2013. Associated factors were hypotension, chest auscultation abnormalities, icterus, oligo/anuria, thrombocytopenia, prothrombin time <68%, high levels of leptospiremia, and infection with L. interrogans serovar Icterohaemorrhagiae/Copenhageni.

EID Hochedez P, Theodose R, Olive C, Bourhy P, Hurtrel G, Vignier N, et al. Factors Associated with Severe Leptospirosis, Martinique, 2010–2013. Emerg Infect Dis. 2015;21(12):2221-2224. https://dx.doi.org/10.3201/eid2112.141099
AMA Hochedez P, Theodose R, Olive C, et al. Factors Associated with Severe Leptospirosis, Martinique, 2010–2013. Emerging Infectious Diseases. 2015;21(12):2221-2224. doi:10.3201/eid2112.141099.
APA Hochedez, P., Theodose, R., Olive, C., Bourhy, P., Hurtrel, G., Vignier, N....Cabié, A. (2015). Factors Associated with Severe Leptospirosis, Martinique, 2010–2013. Emerging Infectious Diseases, 21(12), 2221-2224. https://dx.doi.org/10.3201/eid2112.141099.

Vectorborne Transmission of Leishmania infantum from Hounds, United States [PDF - 425 KB - 4 pages]
R. G. Schaut et al.

Leishmaniasis is a zoonotic disease caused by predominantly vectorborne Leishmania spp. In the United States, canine visceral leishmaniasis is common among hounds, and L. infantum vertical transmission among hounds has been confirmed. We found that L. infantum from hounds remains infective in sandflies, underscoring the risk for human exposure by vectorborne transmission.

EID Schaut RG, Robles-Murguia M, Juelsgaard R, Esch KJ, Bartholomay LC, Ramalho-Ortigao M, et al. Vectorborne Transmission of Leishmania infantum from Hounds, United States. Emerg Infect Dis. 2015;21(12):2209-2212. https://dx.doi.org/10.3201/eid2112.141167
AMA Schaut RG, Robles-Murguia M, Juelsgaard R, et al. Vectorborne Transmission of Leishmania infantum from Hounds, United States. Emerging Infectious Diseases. 2015;21(12):2209-2212. doi:10.3201/eid2112.141167.
APA Schaut, R. G., Robles-Murguia, M., Juelsgaard, R., Esch, K. J., Bartholomay, L. C., Ramalho-Ortigao, M....Petersen, C. A. (2015). Vectorborne Transmission of Leishmania infantum from Hounds, United States. Emerging Infectious Diseases, 21(12), 2209-2212. https://dx.doi.org/10.3201/eid2112.141167.

Kinetics of Serologic Responses to MERS Coronavirus Infection in Humans, South Korea [PDF - 451 KB - 4 pages]
W. Park et al.

We investigated the kinetics of serologic responses to Middle East respiratory syndrome coronavirus (MERS-CoV) infection by using virus neutralization and MERS-CoV S1 IgG ELISA tests. In most patients, robust antibody responses developed by the third week of illness. Delayed antibody responses with the neutralization test were associated with more severe disease.

EID Park W, Perera R, Choe P, Lau E, Choi S, Chun J, et al. Kinetics of Serologic Responses to MERS Coronavirus Infection in Humans, South Korea. Emerg Infect Dis. 2015;21(12):2186-2189. https://dx.doi.org/10.3201/eid2112.151421
AMA Park W, Perera R, Choe P, et al. Kinetics of Serologic Responses to MERS Coronavirus Infection in Humans, South Korea. Emerging Infectious Diseases. 2015;21(12):2186-2189. doi:10.3201/eid2112.151421.
APA Park, W., Perera, R., Choe, P., Lau, E., Choi, S., Chun, J....Oh, M. (2015). Kinetics of Serologic Responses to MERS Coronavirus Infection in Humans, South Korea. Emerging Infectious Diseases, 21(12), 2186-2189. https://dx.doi.org/10.3201/eid2112.151421.

Pyrethroid and DDT Resistance and Organophosphate Susceptibility among Anopheles spp. Mosquitoes, Western Kenya [PDF - 451 KB - 4 pages]
C. L. Wanjala et al.

We conducted standard insecticide susceptibility testing across western Kenya and found that the Anopheles gambiae mosquito has acquired high resistance to pyrethroids and DDT, patchy resistance to carbamates, but no resistance to organophosphates. Use of non–pyrethroid-based vector control tools may be preferable for malaria prevention in this region.

EID Wanjala CL, Mbugi JP, Ototo E, Gesuge M, Afrane YA, Atieli HE, et al. Pyrethroid and DDT Resistance and Organophosphate Susceptibility among Anopheles spp. Mosquitoes, Western Kenya. Emerg Infect Dis. 2015;21(12):2178-2181. https://dx.doi.org/10.3201/eid2112.150814
AMA Wanjala CL, Mbugi JP, Ototo E, et al. Pyrethroid and DDT Resistance and Organophosphate Susceptibility among Anopheles spp. Mosquitoes, Western Kenya. Emerging Infectious Diseases. 2015;21(12):2178-2181. doi:10.3201/eid2112.150814.
APA Wanjala, C. L., Mbugi, J. P., Ototo, E., Gesuge, M., Afrane, Y. A., Atieli, H. E....Lo, E. (2015). Pyrethroid and DDT Resistance and Organophosphate Susceptibility among Anopheles spp. Mosquitoes, Western Kenya. Emerging Infectious Diseases, 21(12), 2178-2181. https://dx.doi.org/10.3201/eid2112.150814.

Association of Human Q Fever with Animal Husbandry, Taiwan, 2004–2012 [PDF - 559 KB - 4 pages]
C. Lai et al.

In Taiwan, Q fever cases in humans began increasing in 2004 and peaked in 2007 but dramatically declined in 2008 and 2011. Cases were significantly correlated with the number of goats. The decline might be associated with the collateral effects of measures to control goat pox in 2008 and 2010.

EID Lai C, Chang L, Lin J, Liao M, Liu S, Lee H, et al. Association of Human Q Fever with Animal Husbandry, Taiwan, 2004–2012. Emerg Infect Dis. 2015;21(12):2217-2220. https://dx.doi.org/10.3201/eid2112.141997
AMA Lai C, Chang L, Lin J, et al. Association of Human Q Fever with Animal Husbandry, Taiwan, 2004–2012. Emerging Infectious Diseases. 2015;21(12):2217-2220. doi:10.3201/eid2112.141997.
APA Lai, C., Chang, L., Lin, J., Liao, M., Liu, S., Lee, H....Chen, Y. (2015). Association of Human Q Fever with Animal Husbandry, Taiwan, 2004–2012. Emerging Infectious Diseases, 21(12), 2217-2220. https://dx.doi.org/10.3201/eid2112.141997.

Methicillin-Resistant Staphylococcus aureus Prevalence among Captive Chimpanzees, Texas, USA, 2012 [PDF - 335 KB - 3 pages]
P. W. Hanley et al.

Methicillin-resistant Staphylococcus aureus (MRSA) infection in humans and animals is concerning. In 2012, our evaluation of a captive chimpanzee colony in Texas revealed MRSA prevalence of 69%. Animal care staff should be aware of possible zoonotic MRSA transmission resulting from high prevalence among captive chimpanzees.

EID Hanley PW, Barnhart KF, Abee CR, Lambeth SP, Weese J. Methicillin-Resistant Staphylococcus aureus Prevalence among Captive Chimpanzees, Texas, USA, 2012. Emerg Infect Dis. 2015;21(12):2158-2160. https://dx.doi.org/10.3201/eid2112.142004
AMA Hanley PW, Barnhart KF, Abee CR, et al. Methicillin-Resistant Staphylococcus aureus Prevalence among Captive Chimpanzees, Texas, USA, 2012. Emerging Infectious Diseases. 2015;21(12):2158-2160. doi:10.3201/eid2112.142004.
APA Hanley, P. W., Barnhart, K. F., Abee, C. R., Lambeth, S. P., & Weese, J. (2015). Methicillin-Resistant Staphylococcus aureus Prevalence among Captive Chimpanzees, Texas, USA, 2012. Emerging Infectious Diseases, 21(12), 2158-2160. https://dx.doi.org/10.3201/eid2112.142004.

Oropharyngeal Tularemia Outbreak Associated with Drinking Contaminated Tap Water, Turkey, July–September 2013 [PDF - 384 KB - 3 pages]
D. Aktas et al.

In 2013, an oropharyngeal tularemia outbreak in Turkey affected 55 persons. Drinking tap water during the likely exposure period was significantly associated with illness (attack rate 27% vs. 11% among non–tap water drinkers). Findings showed the tap water source had been contaminated by surface water, and the chlorination device malfunctioned.

EID Aktas D, Celebi B, Isik M, Tutus C, Ozturk H, Temel F, et al. Oropharyngeal Tularemia Outbreak Associated with Drinking Contaminated Tap Water, Turkey, July–September 2013. Emerg Infect Dis. 2015;21(12):2194-2196. https://dx.doi.org/10.3201/eid2112.142032
AMA Aktas D, Celebi B, Isik M, et al. Oropharyngeal Tularemia Outbreak Associated with Drinking Contaminated Tap Water, Turkey, July–September 2013. Emerging Infectious Diseases. 2015;21(12):2194-2196. doi:10.3201/eid2112.142032.
APA Aktas, D., Celebi, B., Isik, M., Tutus, C., Ozturk, H., Temel, F....Zhu, B. (2015). Oropharyngeal Tularemia Outbreak Associated with Drinking Contaminated Tap Water, Turkey, July–September 2013. Emerging Infectious Diseases, 21(12), 2194-2196. https://dx.doi.org/10.3201/eid2112.142032.

Novel Waddlia Intracellular Bacterium in Artibeus intermedius Fruit Bats, Mexico [PDF - 356 KB - 3 pages]
S. Pierlé et al.

An intracellular bacterium was isolated from fruit bats (Artibeus intermedius) in Cocoyoc, Mexico. The bacterium caused severe lesions in the lungs and spleens of bats and intracytoplasmic vacuoles in cell cultures. Sequence analyses showed it is related to Waddlia spp. (order Chlamydiales). We propose to call this bacterium Waddlia cocoyoc.

EID Pierlé S, Morales C, Martínez L, Ceballos N, Rivero J, Díaz O, et al. Novel Waddlia Intracellular Bacterium in Artibeus intermedius Fruit Bats, Mexico. Emerg Infect Dis. 2015;21(12):2161-2163. https://dx.doi.org/10.3201/eid2112.150002
AMA Pierlé S, Morales C, Martínez L, et al. Novel Waddlia Intracellular Bacterium in Artibeus intermedius Fruit Bats, Mexico. Emerging Infectious Diseases. 2015;21(12):2161-2163. doi:10.3201/eid2112.150002.
APA Pierlé, S., Morales, C., Martínez, L., Ceballos, N., Rivero, J., Díaz, O....Setién, A. (2015). Novel Waddlia Intracellular Bacterium in Artibeus intermedius Fruit Bats, Mexico. Emerging Infectious Diseases, 21(12), 2161-2163. https://dx.doi.org/10.3201/eid2112.150002.

Porcine Epidemic Diarrhea Virus among Farmed Pigs, Ukraine [PDF - 365 KB - 3 pages]
A. Dastjerdi et al.

An outbreak of porcine epidemic diarrhea occurred in the summer of 2014 in Ukraine, severely affecting piglets <10 days of age; the mortality rate approached 100%. Full genome sequencing showed the virus to be closely related to strains reported from North America, showing a sequence identity of up to 99.8%.

EID Dastjerdi A, Carr J, Ellis RJ, Steinbach F, Williamson S. Porcine Epidemic Diarrhea Virus among Farmed Pigs, Ukraine. Emerg Infect Dis. 2015;21(12):2235-2237. https://dx.doi.org/10.3201/eid2112.150272
AMA Dastjerdi A, Carr J, Ellis RJ, et al. Porcine Epidemic Diarrhea Virus among Farmed Pigs, Ukraine. Emerging Infectious Diseases. 2015;21(12):2235-2237. doi:10.3201/eid2112.150272.
APA Dastjerdi, A., Carr, J., Ellis, R. J., Steinbach, F., & Williamson, S. (2015). Porcine Epidemic Diarrhea Virus among Farmed Pigs, Ukraine. Emerging Infectious Diseases, 21(12), 2235-2237. https://dx.doi.org/10.3201/eid2112.150272.

Tembusu-Related Flavivirus in Ducks, Thailand [PDF - 410 KB - 4 pages]
A. Thontiravong et al.

Since 2013, outbreaks of disease caused by duck Tembusu virus (DTMUV) have been observed in layer and broiler duck farms in Thailand. The virus is closely related to Chinese DTMUVs and belongs to the Ntaya group of mosquitoborne flaviviruses. These findings represent the emergence of DTMUV in ducks in Thailand.

EID Thontiravong A, Ninvilai P, Tunterak W, Nonthabenjawan N, Chaiyavong S, Angkabkingkaew K, et al. Tembusu-Related Flavivirus in Ducks, Thailand. Emerg Infect Dis. 2015;21(12):2164-2167. https://dx.doi.org/10.3201/eid2112.150600
AMA Thontiravong A, Ninvilai P, Tunterak W, et al. Tembusu-Related Flavivirus in Ducks, Thailand. Emerging Infectious Diseases. 2015;21(12):2164-2167. doi:10.3201/eid2112.150600.
APA Thontiravong, A., Ninvilai, P., Tunterak, W., Nonthabenjawan, N., Chaiyavong, S., Angkabkingkaew, K....Amonsin, A. (2015). Tembusu-Related Flavivirus in Ducks, Thailand. Emerging Infectious Diseases, 21(12), 2164-2167. https://dx.doi.org/10.3201/eid2112.150600.

Medscape CME Activity
Life-Threatening Sochi Virus Infections, Russia [PDF - 558 KB - 5 pages]
D. H. Kruger et al.

Sochi virus was recently identified as a new hantavirus genotype carried by the Black Sea field mouse, Apodemus ponticus. We evaluated 62 patients in Russia with Sochi virus infection. Most clinical cases were severe, and the case-fatality rate was as high as 14.5%.

EID Kruger DH, Tkachenko EA, Morozov VG, Yunicheva YV, Pilikova OM, Malkin G, et al. Life-Threatening Sochi Virus Infections, Russia. Emerg Infect Dis. 2015;21(12):2204-2208. https://dx.doi.org/10.3201/eid2112.150891
AMA Kruger DH, Tkachenko EA, Morozov VG, et al. Life-Threatening Sochi Virus Infections, Russia. Emerging Infectious Diseases. 2015;21(12):2204-2208. doi:10.3201/eid2112.150891.
APA Kruger, D. H., Tkachenko, E. A., Morozov, V. G., Yunicheva, Y. V., Pilikova, O. M., Malkin, G....Dzagurova, T. K. (2015). Life-Threatening Sochi Virus Infections, Russia. Emerging Infectious Diseases, 21(12), 2204-2208. https://dx.doi.org/10.3201/eid2112.150891.

Increased Number of Human Cases of Influenza Virus A(H5N1) Infection, Egypt, 2014–15 [PDF - 317 KB - 3 pages]
S. Refaey et al.

During November 2014–April 2015, a total of 165 case-patients with influenza virus A(H5N1) infection, including 6 clusters and 51 deaths, were identified in Egypt. Among infected persons, 99% reported poultry exposure: 19% to ill poultry and 35% to dead poultry. Only 1 person reported wearing personal protective equipment while working with poultry.

EID Refaey S, Azziz-Baumgartner E, Amin M, Fahim M, Roguski K, Elaziz H, et al. Increased Number of Human Cases of Influenza Virus A(H5N1) Infection, Egypt, 2014–15. Emerg Infect Dis. 2015;21(12):2171-2173. https://dx.doi.org/10.3201/eid2112.150885
AMA Refaey S, Azziz-Baumgartner E, Amin M, et al. Increased Number of Human Cases of Influenza Virus A(H5N1) Infection, Egypt, 2014–15. Emerging Infectious Diseases. 2015;21(12):2171-2173. doi:10.3201/eid2112.150885.
APA Refaey, S., Azziz-Baumgartner, E., Amin, M., Fahim, M., Roguski, K., Elaziz, H....Kandeel, A. (2015). Increased Number of Human Cases of Influenza Virus A(H5N1) Infection, Egypt, 2014–15. Emerging Infectious Diseases, 21(12), 2171-2173. https://dx.doi.org/10.3201/eid2112.150885.

No Evidence of Gouléako and Herbert Virus Infections in Pigs, Côte d’Ivoire and Ghana [PDF - 444 KB - 4 pages]
S. Junglen et al.

A recent report suggested that 2 novel bunyaviruses discovered in insects in Côte d’Ivoire caused lethal disease in swine in South Korea. We conducted cell culture studies and tested serum from pigs exposed to mosquitoes in Côte d’Ivoire and Ghana and found no evidence for infection in pigs.

EID Junglen S, Marklewitz M, Zirkel F, Wollny R, Meyer B, Heidemann H, et al. No Evidence of Gouléako and Herbert Virus Infections in Pigs, Côte d’Ivoire and Ghana. Emerg Infect Dis. 2015;21(12):2190-2193. https://dx.doi.org/10.3201/eid2112.141840
AMA Junglen S, Marklewitz M, Zirkel F, et al. No Evidence of Gouléako and Herbert Virus Infections in Pigs, Côte d’Ivoire and Ghana. Emerging Infectious Diseases. 2015;21(12):2190-2193. doi:10.3201/eid2112.141840.
APA Junglen, S., Marklewitz, M., Zirkel, F., Wollny, R., Meyer, B., Heidemann, H....Park, S. (2015). No Evidence of Gouléako and Herbert Virus Infections in Pigs, Côte d’Ivoire and Ghana. Emerging Infectious Diseases, 21(12), 2190-2193. https://dx.doi.org/10.3201/eid2112.141840.

Influenza A(H6N1) Virus in Dogs, Taiwan [PDF - 579 KB - 4 pages]
H. Lin et al.

We determined the prevalence of influenza A virus in dogs in Taiwan and isolated A/canine/Taiwan/E01/2014. Molecular analysis indicated that this isolate was closely related to influenza A(H6N1) viruses circulating in Taiwan and harbored the E627K substitution in the polymerase basic 2 protein, which indicated its ability to replicate in mammalian species.

EID Lin H, Wang C, Chueh L, Su B, Wang L. Influenza A(H6N1) Virus in Dogs, Taiwan. Emerg Infect Dis. 2015;21(12):2154-2157. https://dx.doi.org/10.3201/eid2112.141229
AMA Lin H, Wang C, Chueh L, et al. Influenza A(H6N1) Virus in Dogs, Taiwan. Emerging Infectious Diseases. 2015;21(12):2154-2157. doi:10.3201/eid2112.141229.
APA Lin, H., Wang, C., Chueh, L., Su, B., & Wang, L. (2015). Influenza A(H6N1) Virus in Dogs, Taiwan. Emerging Infectious Diseases, 21(12), 2154-2157. https://dx.doi.org/10.3201/eid2112.141229.

Sindbis and Middelburg Old World Alphaviruses Associated with Neurologic Disease in Horses, South Africa [PDF - 469 KB - 5 pages]
S. van Niekerk et al.

Old World alphaviruses were identified in 52 of 623 horses with febrile or neurologic disease in South Africa. Five of 8 Sindbis virus infections were mild; 2 of 3 fatal cases involved co-infections. Of 44 Middelburg virus infections, 28 caused neurologic disease; 12 were fatal. Middelburg virus likely has zoonotic potential.

EID van Niekerk S, Human S, Williams J, van Wilpe E, Pretorius M, Swanepoel R, et al. Sindbis and Middelburg Old World Alphaviruses Associated with Neurologic Disease in Horses, South Africa. Emerg Infect Dis. 2015;21(12):2225-2229. https://dx.doi.org/10.3201/eid2112.150132
AMA van Niekerk S, Human S, Williams J, et al. Sindbis and Middelburg Old World Alphaviruses Associated with Neurologic Disease in Horses, South Africa. Emerging Infectious Diseases. 2015;21(12):2225-2229. doi:10.3201/eid2112.150132.
APA van Niekerk, S., Human, S., Williams, J., van Wilpe, E., Pretorius, M., Swanepoel, R....Venter, M. (2015). Sindbis and Middelburg Old World Alphaviruses Associated with Neurologic Disease in Horses, South Africa. Emerging Infectious Diseases, 21(12), 2225-2229. https://dx.doi.org/10.3201/eid2112.150132.

Spillover of Peste des Petits Ruminants Virus from Domestic to Wild Ruminants in the Serengeti Ecosystem, Tanzania [PDF - 1.48 MB - 5 pages]
M. Mahapatra et al.

We tested wildlife inhabiting areas near domestic livestock, pastures, and water sources in the Ngorongoro district in the Serengeti ecosystem of northern Tanzania and found 63% seropositivity for peste des petits ruminants virus. Sequencing of the viral genome from sick sheep in the area confirmed lineage II virus circulation.

EID Mahapatra M, Sayalel K, Muniraju M, Eblate E, Fyumagwa RD, Shilinde L, et al. Spillover of Peste des Petits Ruminants Virus from Domestic to Wild Ruminants in the Serengeti Ecosystem, Tanzania. Emerg Infect Dis. 2015;21(12):2230-2234. https://dx.doi.org/10.3201/eid2112.150223
AMA Mahapatra M, Sayalel K, Muniraju M, et al. Spillover of Peste des Petits Ruminants Virus from Domestic to Wild Ruminants in the Serengeti Ecosystem, Tanzania. Emerging Infectious Diseases. 2015;21(12):2230-2234. doi:10.3201/eid2112.150223.
APA Mahapatra, M., Sayalel, K., Muniraju, M., Eblate, E., Fyumagwa, R. D., Shilinde, L....Kock, R. (2015). Spillover of Peste des Petits Ruminants Virus from Domestic to Wild Ruminants in the Serengeti Ecosystem, Tanzania. Emerging Infectious Diseases, 21(12), 2230-2234. https://dx.doi.org/10.3201/eid2112.150223.

Japanese Macaques (Macaca fuscata) as Natural Reservoir of Bartonella quintana [PDF - 362 KB - 3 pages]
S. Sato et al.

Bartonella quintana bacteremia was detected in 6 (13.3%) of 45 wild-caught Japanese macaques (Macaca fuscata). Multilocus sequence typing of the isolates revealed that Japanese macaques were infected with a new and specific B. quintana sequence type. Free-ranging Japanese macaques thus represent another natural reservoir of B. quintana.

EID Sato S, Kabeya H, Yoshino A, Sekine W, Suzuki K, Tamate HB, et al. Japanese Macaques (Macaca fuscata) as Natural Reservoir of Bartonella quintana. Emerg Infect Dis. 2015;21(12):2168-2170. https://dx.doi.org/10.3201/eid2112.150632
AMA Sato S, Kabeya H, Yoshino A, et al. Japanese Macaques (Macaca fuscata) as Natural Reservoir of Bartonella quintana. Emerging Infectious Diseases. 2015;21(12):2168-2170. doi:10.3201/eid2112.150632.
APA Sato, S., Kabeya, H., Yoshino, A., Sekine, W., Suzuki, K., Tamate, H. B....Maruyama, S. (2015). Japanese Macaques (Macaca fuscata) as Natural Reservoir of Bartonella quintana. Emerging Infectious Diseases, 21(12), 2168-2170. https://dx.doi.org/10.3201/eid2112.150632.

Water as Source of Francisella tularensis Infection in Humans, Turkey [PDF - 463 KB - 4 pages]
S. Kilic et al.

Francisella tularensis DNA extractions and isolates from the environment and humans were genetically characterized to elucidate environmental sources that cause human tularemia in Turkey. Extensive genetic diversity consistent with genotypes from human outbreaks was identified in environmental samples and confirmed water as a source of human tularemia in Turkey.

EID Kilic S, Birdsell DN, Karagöz A, Çelebi B, Bakkaloglu Z, Arikan M, et al. Water as Source of Francisella tularensis Infection in Humans, Turkey. Emerg Infect Dis. 2015;21(12):2213-2216. https://dx.doi.org/10.3201/eid2112.150634
AMA Kilic S, Birdsell DN, Karagöz A, et al. Water as Source of Francisella tularensis Infection in Humans, Turkey. Emerging Infectious Diseases. 2015;21(12):2213-2216. doi:10.3201/eid2112.150634.
APA Kilic, S., Birdsell, D. N., Karagöz, A., Çelebi, B., Bakkaloglu, Z., Arikan, M....Wagner, D. M. (2015). Water as Source of Francisella tularensis Infection in Humans, Turkey. Emerging Infectious Diseases, 21(12), 2213-2216. https://dx.doi.org/10.3201/eid2112.150634.

Aquatic Bird Bornavirus 1 in Wild Geese, Denmark [PDF - 314 KB - 3 pages]
A. F. Thomsen et al.

To investigate aquatic bird bornavirus 1 in Europe, we examined 333 brains from hunter-killed geese in Denmark in 2014. Seven samples were positive by reverse transcription PCR and were 98.2%–99.8% identical; they were also 97.4%–98.1% identical to reference strains of aquatic bird bornavirus 1 from geese in North America.

EID Thomsen AF, Nielsen JB, Hjulsager CK, Chriél M, Smith DA, Bertelsen MF. Aquatic Bird Bornavirus 1 in Wild Geese, Denmark. Emerg Infect Dis. 2015;21(12):2201-2203. https://dx.doi.org/10.3201/eid2112.150650
AMA Thomsen AF, Nielsen JB, Hjulsager CK, et al. Aquatic Bird Bornavirus 1 in Wild Geese, Denmark. Emerging Infectious Diseases. 2015;21(12):2201-2203. doi:10.3201/eid2112.150650.
APA Thomsen, A. F., Nielsen, J. B., Hjulsager, C. K., Chriél, M., Smith, D. A., & Bertelsen, M. F. (2015). Aquatic Bird Bornavirus 1 in Wild Geese, Denmark. Emerging Infectious Diseases, 21(12), 2201-2203. https://dx.doi.org/10.3201/eid2112.150650.
Letters

Alternative Routes of Zoonotic Vaccinia Virus Transmission, Brazil [PDF - 400 KB - 3 pages]
G. B. Costa et al.
EID Costa GB, Borges IA, Alves PA, Miranda JB, Luiz A, Ferreira P, et al. Alternative Routes of Zoonotic Vaccinia Virus Transmission, Brazil. Emerg Infect Dis. 2015;21(12):2244-2246. https://dx.doi.org/10.3201/eid2112.141249
AMA Costa GB, Borges IA, Alves PA, et al. Alternative Routes of Zoonotic Vaccinia Virus Transmission, Brazil. Emerging Infectious Diseases. 2015;21(12):2244-2246. doi:10.3201/eid2112.141249.
APA Costa, G. B., Borges, I. A., Alves, P. A., Miranda, J. B., Luiz, A., Ferreira, P....Trindade, G. (2015). Alternative Routes of Zoonotic Vaccinia Virus Transmission, Brazil. Emerging Infectious Diseases, 21(12), 2244-2246. https://dx.doi.org/10.3201/eid2112.141249.

Serologic Evidence of Influenza A (H14) Virus Introduction into North America [PDF - 328 KB - 3 pages]
N. Latorre-Margalef et al.
EID Latorre-Margalef N, Ramey AM, Fojtik A, Stallknecht DE. Serologic Evidence of Influenza A (H14) Virus Introduction into North America. Emerg Infect Dis. 2015;21(12):2257-2259. https://dx.doi.org/10.3201/eid2112.150413
AMA Latorre-Margalef N, Ramey AM, Fojtik A, et al. Serologic Evidence of Influenza A (H14) Virus Introduction into North America. Emerging Infectious Diseases. 2015;21(12):2257-2259. doi:10.3201/eid2112.150413.
APA Latorre-Margalef, N., Ramey, A. M., Fojtik, A., & Stallknecht, D. E. (2015). Serologic Evidence of Influenza A (H14) Virus Introduction into North America. Emerging Infectious Diseases, 21(12), 2257-2259. https://dx.doi.org/10.3201/eid2112.150413.

Genetic Characterization of Highly Pathogenic Avian Influenza A(H5N6) Virus, Guangdong, China [PDF - 403 KB - 4 pages]
C. Mok et al.
EID Mok C, Da Guan W, Liu X, Lamers M, Li X, Wang M, et al. Genetic Characterization of Highly Pathogenic Avian Influenza A(H5N6) Virus, Guangdong, China. Emerg Infect Dis. 2015;21(12):2268-2271. https://dx.doi.org/10.3201/eid2112.150809
AMA Mok C, Da Guan W, Liu X, et al. Genetic Characterization of Highly Pathogenic Avian Influenza A(H5N6) Virus, Guangdong, China. Emerging Infectious Diseases. 2015;21(12):2268-2271. doi:10.3201/eid2112.150809.
APA Mok, C., Da Guan, W., Liu, X., Lamers, M., Li, X., Wang, M....Yang, Z. (2015). Genetic Characterization of Highly Pathogenic Avian Influenza A(H5N6) Virus, Guangdong, China. Emerging Infectious Diseases, 21(12), 2268-2271. https://dx.doi.org/10.3201/eid2112.150809.

NADC30-like Strain of Porcine Reproductive and Respiratory Syndrome Virus, China [PDF - 303 KB - 2 pages]
L. Zhou et al.
EID Zhou L, Wang Z, Ding Y, Ge X, Guo X, Yang H. NADC30-like Strain of Porcine Reproductive and Respiratory Syndrome Virus, China. Emerg Infect Dis. 2015;21(12):2256-2257. https://dx.doi.org/10.3201/eid2112.150360
AMA Zhou L, Wang Z, Ding Y, et al. NADC30-like Strain of Porcine Reproductive and Respiratory Syndrome Virus, China. Emerging Infectious Diseases. 2015;21(12):2256-2257. doi:10.3201/eid2112.150360.
APA Zhou, L., Wang, Z., Ding, Y., Ge, X., Guo, X., & Yang, H. (2015). NADC30-like Strain of Porcine Reproductive and Respiratory Syndrome Virus, China. Emerging Infectious Diseases, 21(12), 2256-2257. https://dx.doi.org/10.3201/eid2112.150360.

Characteristics of Traveler with Middle East Respiratory Syndrome, China, 2015 [PDF - 349 KB - 2 pages]
W. Da Guan et al.
EID Da Guan W, Mok C, Chen Z, Feng L, Li Z, Huang J, et al. Characteristics of Traveler with Middle East Respiratory Syndrome, China, 2015. Emerg Infect Dis. 2015;21(12):2278-2280. https://dx.doi.org/10.3201/eid2112.151232
AMA Da Guan W, Mok C, Chen Z, et al. Characteristics of Traveler with Middle East Respiratory Syndrome, China, 2015. Emerging Infectious Diseases. 2015;21(12):2278-2280. doi:10.3201/eid2112.151232.
APA Da Guan, W., Mok, C., Chen, Z., Feng, L., Li, Z., Huang, J....Zhong, N. (2015). Characteristics of Traveler with Middle East Respiratory Syndrome, China, 2015. Emerging Infectious Diseases, 21(12), 2278-2280. https://dx.doi.org/10.3201/eid2112.151232.

CTX-M-15–Producing Escherichia coli in Dolphin, Portugal [PDF - 532 KB - 3 pages]
V. Manageiro et al.
EID Manageiro V, Clemente L, Jones-Dias D, Albuquerque T, Ferreira E, Caniça M. CTX-M-15–Producing Escherichia coli in Dolphin, Portugal. Emerg Infect Dis. 2015;21(12):2249-2251. https://dx.doi.org/10.3201/eid2112.141963
AMA Manageiro V, Clemente L, Jones-Dias D, et al. CTX-M-15–Producing Escherichia coli in Dolphin, Portugal. Emerging Infectious Diseases. 2015;21(12):2249-2251. doi:10.3201/eid2112.141963.
APA Manageiro, V., Clemente, L., Jones-Dias, D., Albuquerque, T., Ferreira, E., & Caniça, M. (2015). CTX-M-15–Producing Escherichia coli in Dolphin, Portugal. Emerging Infectious Diseases, 21(12), 2249-2251. https://dx.doi.org/10.3201/eid2112.141963.

Porcine Deltacoronavirus in Mainland China [PDF - 336 KB - 2 pages]
N. Dong et al.
EID Dong N, Fang L, Zeng S, Sun Q, Chen H, Xiao S. Porcine Deltacoronavirus in Mainland China. Emerg Infect Dis. 2015;21(12):2254-2255. https://dx.doi.org/10.3201/eid2112.150283
AMA Dong N, Fang L, Zeng S, et al. Porcine Deltacoronavirus in Mainland China. Emerging Infectious Diseases. 2015;21(12):2254-2255. doi:10.3201/eid2112.150283.
APA Dong, N., Fang, L., Zeng, S., Sun, Q., Chen, H., & Xiao, S. (2015). Porcine Deltacoronavirus in Mainland China. Emerging Infectious Diseases, 21(12), 2254-2255. https://dx.doi.org/10.3201/eid2112.150283.

Outbreak of Exanthematous Illness Associated with Zika, Chikungunya, and Dengue Viruses, Salvador, Brazil [PDF - 314 KB - 3 pages]
C. W. Cardoso et al.
EID Cardoso CW, Paploski I, Kikuti M, Rodrigues MS, Silva M, Campos GS, et al. Outbreak of Exanthematous Illness Associated with Zika, Chikungunya, and Dengue Viruses, Salvador, Brazil. Emerg Infect Dis. 2015;21(12):2274-2276. https://dx.doi.org/10.3201/eid2112.151167
AMA Cardoso CW, Paploski I, Kikuti M, et al. Outbreak of Exanthematous Illness Associated with Zika, Chikungunya, and Dengue Viruses, Salvador, Brazil. Emerging Infectious Diseases. 2015;21(12):2274-2276. doi:10.3201/eid2112.151167.
APA Cardoso, C. W., Paploski, I., Kikuti, M., Rodrigues, M. S., Silva, M., Campos, G. S....Ribeiro, G. S. (2015). Outbreak of Exanthematous Illness Associated with Zika, Chikungunya, and Dengue Viruses, Salvador, Brazil. Emerging Infectious Diseases, 21(12), 2274-2276. https://dx.doi.org/10.3201/eid2112.151167.

Toxoplasma gondii in Wild Red Squirrels, the Netherlands, 2014 [PDF - 344 KB - 2 pages]
M. Kik et al.
EID Kik M, IJzer J, Opsteegh M, Montizaan M, Dijkstra V, Rijks JM, et al. Toxoplasma gondii in Wild Red Squirrels, the Netherlands, 2014. Emerg Infect Dis. 2015;21(12):2248-2249. https://dx.doi.org/10.3201/eid2112.141711
AMA Kik M, IJzer J, Opsteegh M, et al. Toxoplasma gondii in Wild Red Squirrels, the Netherlands, 2014. Emerging Infectious Diseases. 2015;21(12):2248-2249. doi:10.3201/eid2112.141711.
APA Kik, M., IJzer, J., Opsteegh, M., Montizaan, M., Dijkstra, V., Rijks, J. M....Gröne, A. (2015). Toxoplasma gondii in Wild Red Squirrels, the Netherlands, 2014. Emerging Infectious Diseases, 21(12), 2248-2249. https://dx.doi.org/10.3201/eid2112.141711.

Tickborne Lymphadenopathy Complicated by Acute Myopericarditis, Spain [PDF - 326 KB - 3 pages]
J. Silva et al.
EID Silva J, López-Medrano F, Fernández-Ruiz M, Foz E, Portillo A, Oteo JA, et al. Tickborne Lymphadenopathy Complicated by Acute Myopericarditis, Spain. Emerg Infect Dis. 2015;21(12):2240-2242. https://dx.doi.org/10.3201/eid2112.150672
AMA Silva J, López-Medrano F, Fernández-Ruiz M, et al. Tickborne Lymphadenopathy Complicated by Acute Myopericarditis, Spain. Emerging Infectious Diseases. 2015;21(12):2240-2242. doi:10.3201/eid2112.150672.
APA Silva, J., López-Medrano, F., Fernández-Ruiz, M., Foz, E., Portillo, A., Oteo, J. A....Aguado, J. (2015). Tickborne Lymphadenopathy Complicated by Acute Myopericarditis, Spain. Emerging Infectious Diseases, 21(12), 2240-2242. https://dx.doi.org/10.3201/eid2112.150672.

Use of Capture–Recapture to Estimate Underreporting of Ebola Virus Disease, Montserrado County, Liberia [PDF - 289 KB - 3 pages]
E. Gignoux et al.
EID Gignoux E, Idowu R, Bawo L, Hurum L, Sprecher A, Bastard M, et al. Use of Capture–Recapture to Estimate Underreporting of Ebola Virus Disease, Montserrado County, Liberia. Emerg Infect Dis. 2015;21(12):2265-2267. https://dx.doi.org/10.3201/eid2112.150756
AMA Gignoux E, Idowu R, Bawo L, et al. Use of Capture–Recapture to Estimate Underreporting of Ebola Virus Disease, Montserrado County, Liberia. Emerging Infectious Diseases. 2015;21(12):2265-2267. doi:10.3201/eid2112.150756.
APA Gignoux, E., Idowu, R., Bawo, L., Hurum, L., Sprecher, A., Bastard, M....Porten, K. (2015). Use of Capture–Recapture to Estimate Underreporting of Ebola Virus Disease, Montserrado County, Liberia. Emerging Infectious Diseases, 21(12), 2265-2267. https://dx.doi.org/10.3201/eid2112.150756.

Probability of Spirochete Borrelia miyamotoi Transmission from Ticks to Humans [PDF - 294 KB - 2 pages]
D. S. Sarksyan et al.
EID Sarksyan DS, Platonov AE, Karan L, Shipulin GA, Sprong H, Hovius J. Probability of Spirochete Borrelia miyamotoi Transmission from Ticks to Humans. Emerg Infect Dis. 2015;21(12):2273-2274. https://dx.doi.org/10.3201/eid2112.151097
AMA Sarksyan DS, Platonov AE, Karan L, et al. Probability of Spirochete Borrelia miyamotoi Transmission from Ticks to Humans. Emerging Infectious Diseases. 2015;21(12):2273-2274. doi:10.3201/eid2112.151097.
APA Sarksyan, D. S., Platonov, A. E., Karan, L., Shipulin, G. A., Sprong, H., & Hovius, J. (2015). Probability of Spirochete Borrelia miyamotoi Transmission from Ticks to Humans. Emerging Infectious Diseases, 21(12), 2273-2274. https://dx.doi.org/10.3201/eid2112.151097.

Human Alveolar Echinococcosis, Czech Republic, 2007–2014 [PDF - 378 KB - 3 pages]
L. Kolářová et al.
EID Kolářová L, Matějů J, Hrdý J, Kolářová H, Hozáková L, Žampachová V, et al. Human Alveolar Echinococcosis, Czech Republic, 2007–2014. Emerg Infect Dis. 2015;21(12):2263-2265. https://dx.doi.org/10.3201/eid2112.150743
AMA Kolářová L, Matějů J, Hrdý J, et al. Human Alveolar Echinococcosis, Czech Republic, 2007–2014. Emerging Infectious Diseases. 2015;21(12):2263-2265. doi:10.3201/eid2112.150743.
APA Kolářová, L., Matějů, J., Hrdý, J., Kolářová, H., Hozáková, L., Žampachová, V....Stejskal, F. (2015). Human Alveolar Echinococcosis, Czech Republic, 2007–2014. Emerging Infectious Diseases, 21(12), 2263-2265. https://dx.doi.org/10.3201/eid2112.150743.

Hunter Island Group Phlebovirus in Ticks, Australia [PDF - 332 KB - 3 pages]
P. J. Gauci et al.
EID Gauci PJ, McAllister J, Mitchell IR, St. George TD, Cybinski DH, Davis SS, et al. Hunter Island Group Phlebovirus in Ticks, Australia. Emerg Infect Dis. 2015;21(12):2246-2248. https://dx.doi.org/10.3201/eid2112.141303
AMA Gauci PJ, McAllister J, Mitchell IR, et al. Hunter Island Group Phlebovirus in Ticks, Australia. Emerging Infectious Diseases. 2015;21(12):2246-2248. doi:10.3201/eid2112.141303.
APA Gauci, P. J., McAllister, J., Mitchell, I. R., St. George, T. D., Cybinski, D. H., Davis, S. S....Gubala, A. J. (2015). Hunter Island Group Phlebovirus in Ticks, Australia. Emerging Infectious Diseases, 21(12), 2246-2248. https://dx.doi.org/10.3201/eid2112.141303.

Onchocerca lupi Nematode in Cat, Portugal [PDF - 418 KB - 3 pages]
C. Maia et al.
EID Maia C, Annoscia G, Latrofa M, Pereira A, Giannelli A, Pedroso L, et al. Onchocerca lupi Nematode in Cat, Portugal. Emerg Infect Dis. 2015;21(12):2252-2254. https://dx.doi.org/10.3201/eid2112.150061
AMA Maia C, Annoscia G, Latrofa M, et al. Onchocerca lupi Nematode in Cat, Portugal. Emerging Infectious Diseases. 2015;21(12):2252-2254. doi:10.3201/eid2112.150061.
APA Maia, C., Annoscia, G., Latrofa, M., Pereira, A., Giannelli, A., Pedroso, L....Otranto, D. (2015). Onchocerca lupi Nematode in Cat, Portugal. Emerging Infectious Diseases, 21(12), 2252-2254. https://dx.doi.org/10.3201/eid2112.150061.

Parainfluenza Virus 5 as Possible Cause of Severe Respiratory Disease in Calves, China [PDF - 340 KB - 3 pages]
Y. Liu et al.
EID Liu Y, Li N, Zhang S, Zhang F, Lian H, Hu R. Parainfluenza Virus 5 as Possible Cause of Severe Respiratory Disease in Calves, China. Emerg Infect Dis. 2015;21(12):2242-2244. https://dx.doi.org/10.3201/eid2112.141111
AMA Liu Y, Li N, Zhang S, et al. Parainfluenza Virus 5 as Possible Cause of Severe Respiratory Disease in Calves, China. Emerging Infectious Diseases. 2015;21(12):2242-2244. doi:10.3201/eid2112.141111.
APA Liu, Y., Li, N., Zhang, S., Zhang, F., Lian, H., & Hu, R. (2015). Parainfluenza Virus 5 as Possible Cause of Severe Respiratory Disease in Calves, China. Emerging Infectious Diseases, 21(12), 2242-2244. https://dx.doi.org/10.3201/eid2112.141111.

Isolation of Porcine Epidemic Diarrhea Virus during Outbreaks in South Korea, 2013–2014 [PDF - 348 KB - 3 pages]
H. Chung et al.
EID Chung H, Nguyen V, Moon H, Lee J, Park S, Lee G, et al. Isolation of Porcine Epidemic Diarrhea Virus during Outbreaks in South Korea, 2013–2014. Emerg Infect Dis. 2015;21(12):2238-2240. https://dx.doi.org/10.3201/eid2112.150437
AMA Chung H, Nguyen V, Moon H, et al. Isolation of Porcine Epidemic Diarrhea Virus during Outbreaks in South Korea, 2013–2014. Emerging Infectious Diseases. 2015;21(12):2238-2240. doi:10.3201/eid2112.150437.
APA Chung, H., Nguyen, V., Moon, H., Lee, J., Park, S., Lee, G....Park, B. (2015). Isolation of Porcine Epidemic Diarrhea Virus during Outbreaks in South Korea, 2013–2014. Emerging Infectious Diseases, 21(12), 2238-2240. https://dx.doi.org/10.3201/eid2112.150437.

Disseminated Infection Caused by Francisella philomiragia, France, 2014 [PDF - 281 KB - 2 pages]
L. Kreitmann et al.
EID Kreitmann L, Terriou L, Launay D, Caspar Y, Courcol R, Maurin M, et al. Disseminated Infection Caused by Francisella philomiragia, France, 2014. Emerg Infect Dis. 2015;21(12):2260-2261. https://dx.doi.org/10.3201/eid2112.150615
AMA Kreitmann L, Terriou L, Launay D, et al. Disseminated Infection Caused by Francisella philomiragia, France, 2014. Emerging Infectious Diseases. 2015;21(12):2260-2261. doi:10.3201/eid2112.150615.
APA Kreitmann, L., Terriou, L., Launay, D., Caspar, Y., Courcol, R., Maurin, M....Lemaître, N. (2015). Disseminated Infection Caused by Francisella philomiragia, France, 2014. Emerging Infectious Diseases, 21(12), 2260-2261. https://dx.doi.org/10.3201/eid2112.150615.

Severe Ocular Cowpox in a Human, Finland [PDF - 343 KB - 3 pages]
P. M. Kinnunen et al.
EID Kinnunen PM, Holopainen JM, Hemmilä H, Piiparinen H, Sironen T, Kivelä T, et al. Severe Ocular Cowpox in a Human, Finland. Emerg Infect Dis. 2015;21(12):2261-2263. https://dx.doi.org/10.3201/eid2112.150621
AMA Kinnunen PM, Holopainen JM, Hemmilä H, et al. Severe Ocular Cowpox in a Human, Finland. Emerging Infectious Diseases. 2015;21(12):2261-2263. doi:10.3201/eid2112.150621.
APA Kinnunen, P. M., Holopainen, J. M., Hemmilä, H., Piiparinen, H., Sironen, T., Kivelä, T....Vapalahti, O. (2015). Severe Ocular Cowpox in a Human, Finland. Emerging Infectious Diseases, 21(12), 2261-2263. https://dx.doi.org/10.3201/eid2112.150621.

Malformations Caused by Shuni Virus in Ruminants, Israel, 2014–2015 [PDF - 305 KB - 2 pages]
N. Golender et al.
EID Golender N, Brenner J, Valdman M, Khinich Y, Bumbarov V, Panshin A, et al. Malformations Caused by Shuni Virus in Ruminants, Israel, 2014–2015. Emerg Infect Dis. 2015;21(12):2267-2268. https://dx.doi.org/10.3201/eid2112.150804
AMA Golender N, Brenner J, Valdman M, et al. Malformations Caused by Shuni Virus in Ruminants, Israel, 2014–2015. Emerging Infectious Diseases. 2015;21(12):2267-2268. doi:10.3201/eid2112.150804.
APA Golender, N., Brenner, J., Valdman, M., Khinich, Y., Bumbarov, V., Panshin, A....Behar, A. (2015). Malformations Caused by Shuni Virus in Ruminants, Israel, 2014–2015. Emerging Infectious Diseases, 21(12), 2267-2268. https://dx.doi.org/10.3201/eid2112.150804.

Emerging Rabbit Hemorrhagic Disease Virus 2 (RHDVb), Australia [PDF - 342 KB - 3 pages]
R. N. Hall et al.
EID Hall RN, Mahar JE, Haboury S, Stevens V, Holmes EC, Strive T. Emerging Rabbit Hemorrhagic Disease Virus 2 (RHDVb), Australia. Emerg Infect Dis. 2015;21(12):2276-2278. https://dx.doi.org/10.3201/eid2112.151210
AMA Hall RN, Mahar JE, Haboury S, et al. Emerging Rabbit Hemorrhagic Disease Virus 2 (RHDVb), Australia. Emerging Infectious Diseases. 2015;21(12):2276-2278. doi:10.3201/eid2112.151210.
APA Hall, R. N., Mahar, J. E., Haboury, S., Stevens, V., Holmes, E. C., & Strive, T. (2015). Emerging Rabbit Hemorrhagic Disease Virus 2 (RHDVb), Australia. Emerging Infectious Diseases, 21(12), 2276-2278. https://dx.doi.org/10.3201/eid2112.151210.

Surveillance for Ebola Virus in Wildlife, Thailand [PDF - 352 KB - 3 pages]
S. Wacharapluesadee et al.
EID Wacharapluesadee S, Olival KJ, Kanchanasaka B, Duengkae P, Kaewchot S, Srongmongkol P, et al. Surveillance for Ebola Virus in Wildlife, Thailand. Emerg Infect Dis. 2015;21(12):2271-2273. https://dx.doi.org/10.3201/eid2112.150860
AMA Wacharapluesadee S, Olival KJ, Kanchanasaka B, et al. Surveillance for Ebola Virus in Wildlife, Thailand. Emerging Infectious Diseases. 2015;21(12):2271-2273. doi:10.3201/eid2112.150860.
APA Wacharapluesadee, S., Olival, K. J., Kanchanasaka, B., Duengkae, P., Kaewchot, S., Srongmongkol, P....Hemachudha, T. (2015). Surveillance for Ebola Virus in Wildlife, Thailand. Emerging Infectious Diseases, 21(12), 2271-2273. https://dx.doi.org/10.3201/eid2112.150860.
Books and Media

The Politics and Crisis Management of Animal Health Security [PDF - 199 KB - 1 page]
J. McQuiston
EID McQuiston J. The Politics and Crisis Management of Animal Health Security. Emerg Infect Dis. 2015;21(12):2281. https://dx.doi.org/10.3201/eid2112.151507
AMA McQuiston J. The Politics and Crisis Management of Animal Health Security. Emerging Infectious Diseases. 2015;21(12):2281. doi:10.3201/eid2112.151507.
APA McQuiston, J. (2015). The Politics and Crisis Management of Animal Health Security. Emerging Infectious Diseases, 21(12), 2281. https://dx.doi.org/10.3201/eid2112.151507.
About the Cover

Anthropomorphism to Zoonoses: Two Inevitable Consequences of Human–Animal Relationships [PDF - 353 KB - 2 pages]
B. Breedlove and P. M. Arguin
EID Breedlove B, Arguin PM. Anthropomorphism to Zoonoses: Two Inevitable Consequences of Human–Animal Relationships. Emerg Infect Dis. 2015;21(12):2282-2283. https://dx.doi.org/10.3201/eid2112.ac2112
AMA Breedlove B, Arguin PM. Anthropomorphism to Zoonoses: Two Inevitable Consequences of Human–Animal Relationships. Emerging Infectious Diseases. 2015;21(12):2282-2283. doi:10.3201/eid2112.ac2112.
APA Breedlove, B., & Arguin, P. M. (2015). Anthropomorphism to Zoonoses: Two Inevitable Consequences of Human–Animal Relationships. Emerging Infectious Diseases, 21(12), 2282-2283. https://dx.doi.org/10.3201/eid2112.ac2112.
Etymologia

Etymologia: Leprosy [PDF - 297 KB - 1 page]
Page created: January 22, 2016
Page updated: January 22, 2016
Page reviewed: January 22, 2016
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
edit_01 Submit Manuscript
Issue Select
GO
GO

Get Email Updates

To receive email updates about this page, enter your email address:

file_external