Skip directly to search Skip directly to A to Z list Skip directly to site content
CDC Home

Volume 15, Number 8—August 2009

Synopsis

Tactics and Economics of Wildlife Oral Rabies Vaccination, Canada and the United States

Ray T. SternerComments to Author , Martin I. Meltzer, Stephanie A. Shwiff, and Dennis Slate
Author affiliations: US Department of Agriculture, Fort Collins, Colorado, USA (R.T. Sterner, S.A. Shwiff); Centers for Disease Control and Prevention, Atlanta, Georgia, USA (M.I. Meltzer); US Department of Agriculture, Concord, New Hampshire, USA (D. Slate)

Main Article

Table 3

Comparison of selected modeling studies that examined the economics of oral rabies vaccination programs*

Reference Locale, tactics, target species Type of study, model Duration modeled, y Cost and density of vaccine baits; distribution costs† Results Comments
(27) 2 counties in New Jersey, ORV, raccoon Benefit:cost, cost data collected from field with hypothetical baiting program 5 $1–$2/bait; 62–200 baits/km2; distribution $100/km2 Net savings $13.34–$20.78/ county resident (1990 US$);
$1,244/km2 – $1,939/km2 Probably unrealistic: assumed only 2 baitings; no contingency costs; main economic benefit = reduced pet vaccinations
(33)‡ Hypothetical 34,447 km2-area, expanding circle then maintained barrier zone, raccoon Benefit:cost of hypothetical baiting program, extensive sensitivity analyses 30 $1.50/ bait; 100 baits/km2 (range 40–115); distribution $39/km2 (maximim $100/ km2) Net savings of $3.1 million if reduced pet vaccinations included as benefit. Net cost ($6.2 million) if pet vaccinations excluded. Lack of data required many assumptions; bait density, cost/ bait, and value of pet vaccinations were the most critical elements
(34)§¶ Appalachian Ridge area, ORV, raccoon Benefit:cost model of program to deter westward spread of raccoon rabies 20 $1.30/bait, 75 baits/km2 ; aerial distribution $8.62/ km2; evaluation $15/km2 Net savings $100–$500 million (2000 US$) Assumed that without ORV, rabies would move 42 or 125 km/y west; distribution costs are low; animal vaccinations are critical component
(26)# Ohio–Pennsylvania, ORV zone (400 km2), raccoon Simulation of individual raccoons + benefit:cost model to prevent westward spread of raccoon rabies 40 $1.47/bait; 3 scenarios of 70, 100, 175 baits/km2. Distribution $23.23/km2 Net costs (1999 US$; savings recouped 5 km band west of zone) Complex model showing importance of many biological factors determining potential for success and net savings
(35) Texas,
progressive elimination, collapsed bands, coyote Retrospective benefit:cost
model; projected population-based PEP and animal test costs for 20 southern to 232-county expansion area 12 $26.3 million total cost (2006 US$; Texas Department of State Health Services accumulated value) Net savings $98–$354 million; BCRs of 3.7–13.4; range of savings for 100%, 50% and 25% of PEP and rabies tests in epizootic area. Simple model showing wide-area expansion. ORV proved cost-efficient if projections were reduced to 7% of the PEP and tests for epizootic counties
S.A. Shwiff, unpub. data Ontario, progressive elimination, expanded wedge, arctic-fox variant,
red fox Benefit:cost measured costs but had to model savings 12 $77.4 million (2006 Can$) for total ORV Net savings in 3 of 4 scenarios: reductions in animal rabies testing accounted for most net savings. Assumed multiple estimates of future rabies-related costs

*No inflation corrections used. ORV, oral rabies vaccination; PEP, postexposure prophylaxis; BCRs, benefit:cost ratios.
†Distribution costs exclude cost of bait purchases. US$ except as indicated.
‡For example, Meltzer (33) posited a baseline assumption with a distribution cost of $39/km2.
§Kemere et al. (34) assumed that the “… effectiveness of vaccination programs would be validated through surveillance and testing of raccoon populations in the ORV zones … [evaluation cost] also includes educational, promotional, and overhead expenses.”
¶Although Kemere et al. (34) did not explicitly allow for contingency costs (to allow for breaches of ORV zones, etc.), they did sensitivity analyses assuming “… the full program costs are used for the entire period instead of dropping to 40% after 5 years.”
#Foroutan et al. (26) only considered benefits extending up to 5 km west of the ORV zone. A simple extrapolation would suggest that net savings would occur if the calculated benefits were to extend some 100–150 km west of the ORV zone.

Main Article

Top of Page

USA.gov: The U.S. Government's Official Web PortalDepartment of Health and Human Services
Centers for Disease Control and Prevention   1600 Clifton Rd. Atlanta, GA 30333, USA
800-CDC-INFO (800-232-4636) TTY: (888) 232-6348 - Contact CDC–INFO