Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

Volume 16, Number 7—July 2010

Conference Summary

Peer Reviewed Report Available Online Only

15th International Workshop on Campylobacter, Helicobacter and Related Organisms

John E. MooreComments to Author  and Motoo Matsuda
Author affiliations: Northern Ireland Public Health Laboratory, Belfast, Northern Ireland, UK (J.E. Moore); University of Ulster, Coleraine, Northern Ireland, UK (J.E. Moore); Azabu University, Sagamihara, Japan (M. Matsuda)

Suggested citation for this article

The purpose of this communication is to update the veterinary public health community as to what poultry-related interventions were presented at the recent biennial International Workshop on Campylobacter, Helicobacter and Related Organisms (CHRO), which was held in Niigata, Japan, September 2–5, 2009. More than 30 years have passed since the publication of Martin Skirrow’s seminal paper in the British Medical Journal in which he described Campylobacter enteritis as a new disease (1). This publication precipitated a global interest in thermophilic campylobacters. Three decades later, these organisms still pose a grave threat to public health. Furthermore, 10 years have passed since Parkhill et al. published the genome sequence of Campylobacter jejuni NCTC11168 (2).

Today, thermophilic campylobacters remain the most common cause of acute bacterial enteritis in the developed world (3), where the ingestion of contaminated chicken or poor food handling practices associated with raw chicken represents the primary route of transmission to humans. Thus, although these organisms are not a problem in animal health terms, they are of major importance to veterinary public health professionals. Of course, we know campylobacters existed before Skirrow’s paper (1), but their fastidious nature made their detection microbiologically complicated. Since then, we have gained an enormous amount of data regarding these organisms, including the publication of the complete genome sequence for C. jejuni (2). Paradoxically, despite all this acquired knowledge, the prevalence of human infections remains high and we still have major problems in producing poultry that are free of campylobacters, although a quantitative reduction in the amount of campylobacters in raw poultry meat on retail sale would have a notable effect in reducing human foodborne disease. On October 6, 2009 the UK Food Standards Agency published a report, which indicated a Campylobacter spp. prevalence rate in retail chicken of 65.2% (confidence interval 62.1%–68.2%) in 927 samples tested (4).

Information regarding all the sessions and speakers at the International Workshop on Campylobacter, Helicobacter and Related Organisms (CHRO) is detailed on the symposium website (http://chro2009.jp/). Summaries of the interventions presented at the Workshop are given in the Table. Paradoxically, there were few reports on interventions for adoption in developing and underdeveloped nations, where this disease is responsible for much illness and death. The interventions reported at the meeting were largely for adoption in industrialized nations and followed the themes of biosecurity, use of bacteriophages, bacteriocins, probiotics, antimicrobial drugs, and vaccination and reported varying degrees of success. What is clear from these data is that there is no single magic bullet intervention that can be singularly relied upon by the poultry industry to be an absolute control of campylobacters in poultry. Hence, reduction may be achieved through an integrated combination of several of these interventions. What is now urgently required is for the most promising of these interventions to be adopted on an industrial scale to reduce the burden of campylobacters on human foodborne disease globally.

Dr Moore is a clinical microbiologist at the Northern Ireland Public Health Laboratory, Department of Bacteriology, Belfast City Hospital, Honorary Professor of Clinical Microbiology, School of Biomedical Sciences, University of Ulster, and a member of the Northern Ireland Food Advisory Committee, Food Standards Agency. He has been working with thermophilic campylobacters for the past 21 years.

Dr Matsuda is Professor of Molecular Biology, School of Environmental Health Sciences, Azabu University, Sagamihara, Japan, and has been working on campylobacters for many years. Members of Professor Matsuda’s group have been key global researchers into the fundamental aspects of urease-producing campylobacters (urease-positive thermophilic Campylobacter).

References

  1. Skirrow MB. Campylobacter enteritis: a “new” disease. BMJ. 1977;2:911. DOIPubMed
  2. Parkhill J, Wren BW, Mungall K, Ketley JM, Churcher C, Basham D, The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature. 2000;403:6658. DOIPubMed
  3. Moore JE, Corcoran D, Dooley JS, Fanning S, Lucey B, Matsuda M, Campylobacter. Vet Res. 2005;36:35182. DOIPubMed
  4. Food Standards Agency. A UK survey of Campylobacter and Salmonella contamination of fresh chicken at retail sale. 2009. [cited 2010 Apr 15]. http://www.food.gov.uk/science/surveillance/fsisbranch2009/fsis0409
  5. Gittens GE, Newell DG. Survey of intervention measures adopted for Campylobacter control by UK chicken producers. In: Proceedings of the 15th International Workshop on Campylobacter, Helicobacter and Related Organisms (CHRO); 2009 Sep 2–5; Niigata, Japan. Abstract 205. p. 139.
  6. Newell DG, Allen V. A critical review of interventions and strategies (both biosecurity and non-biosecurity) to reduce Campylobacter on the poultry farm. In: Proceedings of the 15th International Workshop on Campylobacter, Helicobacter and Related Organisms (CHRO); 2009 Sep 2–5; Niigata, Japan. Abstract 204. p. 138.
  7. Svetoch EA, Stern NJ. Potentials for bacteriocin development to control Campylobacter in broilers. In: Proceedings of the 15th International Workshop on Campylobacter, Helicobacter and Related Organisms (CHRO); 2009 Sep 2–5; Niigata, Japan. Abstract S4-2-1. p. 44.
  8. Newell DG. Vaccination of chickens against Campylobacter as a potential intervention approach to reduce campylobacteriosis. In: Proceedings of the 15th International Workshop on Campylobacter, Helicobacter and Related Organisms (CHRO); 2009 Sep 2–5; Niigata, Japan. Abstract S4-2-2. p. 44.
  9. Gudivada R, Cawthraw SA, Kennedy E, Newell DG. Immune responses in chickens following immunization with DNA and sub-unit Campylobacter jejuni vaccines. In: Proceedings of the 15th International Workshop on Campylobacter, Helicobacter and Related Organisms (CHRO); 2009 Sep 2–5; Niigata, Japan. Abstract 213. p. 141.
  10. Hanan T, Hilmi A, Saris PEJ. Inhibition of Campylobacter jejuni by chicken crop isolates of Lactobacillus salivarius. In: Proceedings of the 15th International Workshop on Campylobacter, Helicobacter and Related Organisms (CHRO); 2009 Sep 2–5; Niigata, Japan. Abstract 221. p. 144.
  11. El-Shibiny A, Scott A, Connerton P, Connerton I. Application of a group II Campylobacter bacteriophage to reduce strains of C. jejuni and C. coli colonizing broiler chickens. In: Proceedings of the 15th International Workshop on Campylobacter, Helicobacter and Related Organisms (CHRO); 2009 Sep 2–5; Niigata, Japan.
  12. Connerton IF. The role of bacteriophage in the ecology and control of Campylobacter in chickens. In: Proceedings of the 15th International Workshop on Campylobacter, Helicobacter and Related Organisms (CHRO); 2009 Sep 2–5; Niigata, Japan. Abstract S4-2-3. p. 44.
  13. Marubashi T. Use of probiotics in controlling Campylobacter. In: Proceedings of the 15th International Workshop on Campylobacter, Helicobacter and Related Organisms (CHRO); 2009 Sep 2–5; Niigata, Japan. Abstract S4-2-4. p 44–45.
  14. Donoghue DJ, De los Santos F, Hume I, Venkitanarayanan K, Donoghue AM, Hanning I, Caprylic acid reduces enteric Campylobacter colonization in market aged broiler chickens but does not alter cecal microbial populations. In: Proceedings of the 15th International Workshop on Campylobacter, Helicobacter and Related Organisms (CHRO); 2009 Sep 2–5; Niigata, Japan. Abstract 200. p. 137.
  15. van Gerwe TJ, Bouma A, Klinkenberg D, Jacobs-Reitsma WJ, Stegeman JA, Wagenaar JA. Beta-Poisson modeling of the reduction of Campylobacter susceptibility by short chain and medium chain fatty acid feed supplementation in 14 and 18 day-old commercial broilers. In: Proceedings of the 15th International Workshop on Campylobacter, Helicobacter and Related Organisms (CHRO); 2009 Sep 2–5; Niigata, Japan. Abstract 207. p. 139.
  16. Shimazaki Y, Ishihara K, Muramatsu Y, Tamura Y. Effectiveness of strongly acidic electrolyzed water on decontamination of Campylobacter in chicken meats and implements. In: Proceedings of the 15th International Workshop on Campylobacter, Helicobacter and Related Organisms (CHRO); 2009 Sep 2–5; Niigata, Japan. Abstract 222. p. 144.
  17. Lowman R, Haroardottir H, Kristinsson K, Sigmundsdottir G, Frioriksdottir V, Reiersen J, Iceland: a review of reduction in human incidence of domestically acquired campylobacteriosis from 2000–2008, concurrent with Iceland’s freezing policy. In: Proceedings of the 15th International Workshop on Campylobacter, Helicobacter and Related Organisms (CHRO); 2009 Sep 2–5; Niigata, Japan. Abstract 209. p. 140.
  18. Allen VM, Tinker DB, Atterbury RJ, Harrison D, Howell M. Campylobacter numbers and visual cleanliness on poultry transport crates following plant modification. In: Proceedings of the 15th International Workshop on Campylobacter, Helicobacter and Related Organisms (CHRO); 2009 Sep 2–5; Niigata, Japan. Abstract 206. p. 139.
  19. Lowman R, Reiersen J, Jonsson T, Gunnarsson E, Bisaillon JR, Daoadottir S. Iceland: 2008 pilot year fly netting ventilation inlets of 35 broiler houses to reduce flyborne transmission of Campylobacter spp. to flocks. In: Proceedings of the 15th International Workshop on Campylobacter, Helicobacter and Related Organisms (CHRO); 2009 Sep 2–5; Niigata, Japan. Abstract 210. p. 140.
  20. Van Pelt W, Havelaar AH, Westra P, Wagenaar JA. Strong regional reduction of campylobacteriosis during and after avian influenza poultry farm culling. A model for future intervention studies at primary production? In: Proceedings of the 15th International Workshop on Campylobacter, Helicobacter and related Related Organisms (CHRO); 2009 Sep 2–5; Niigata, Japan. Abstract P25. p. 83.

Table

Suggested citation for this article: Moore JE, Matsuda M. 15th international workshop on Campylobacter, Helicobacter and related organisms (CHRO) [conference summary]. Emerg Infect Dis [serial on the Internet]. 2010 Jul [date cited]. http://wwwnc.cdc.gov/eid/article/16/7/10-0157

DOI: 10.3201/eid1607.100157

Table of Contents – Volume 16, Number 7—July 2010

Comments to the Authors

Please use the form below to submit correspondence to the authors or contact them at the following address:

John E. Moore, Northern Ireland Public Health Laboratory, Department of Bacteriology, Belfast City Hospital, Belfast BT9 7AD, Northern Ireland, UK

character(s) remaining.

Comment submitted successfully, thank you for your feedback.

Comments to the EID Editors

Please contact the EID Editors via our Contact Form.

TOP