Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 17, Number 2—February 2011
Dispatch

Novel HIV-1 Recombinant Forms in Antenatal Cohort, Montreal, Quebec, Canada

Mathieu Quesnel-Vallières, Iman Kouzayha, Evelyne Tran, Issatou Barry, Charlène Lasgi, Natacha Merindol, Vanessa Monteil, Doris G. Ransy, Marc Boucher, Normand Lapointe, and Hugo SoudeynsComments to Author 
Author affiliations: Author affiliations: Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada (M. Quesnel-Vallières, I. Kouzayha, E. Tran, I. Barry, C. Lasgi, N. Merindol, V. Monteil, D.G. Ransy, M. Boucher, N. Lapointe, H. Soudeyns); Université de Montréal, Montreal (M. Quesnel-Vallières, I. Kouzayha, E. Tran, I. Barry, N. Merindol, D.G. Ransy, M. Boucher, N. Lapointe, H. Soudeyns); Université Pierre et Marie Curie, Paris, France (C. Lasgi)

Main Article

Figure

Genetic organization and recombination breakpoints in HIV-1 genomic sequences isolated from patients TV721 (A), TV725 (B), TV749 (C), and TV919 (D). Nucleotide sequences were submitted to GenBank (accession nos. HM215249–HM215252). Similarity plots were produced with Simplot version 3.5.1 (http://sray.med.som.jhmi.edu/SCRoftware/simplot) by using windows of 500 nt and increments of 50 nt to guide the choice of reference sequences used for bootscanning (8). Bootscan analyses were then performed a

Figure. Genetic organization and recombination breakpoints in HIV-1 genomic sequences isolated from patients TV721 (A), TV725 (B), TV749 (C), and TV919 (D). Nucleotide sequences were submitted to GenBank (accession nos. HM215249–HM215252). Similarity plots were produced with Simplot version 3.5.1 (http://sray.med.som.jhmi.edu/SCRoftware/simplot) by using windows of 500 nt and increments of 50 nt to guide the choice of reference sequences used for bootscanning (8). Bootscan analyses were then performed according to the neighbor-joining method and Kimura 2-parameter distances. The size of the sliding window was set at 300 nt with 10-nt increments (9). Reference sequences used were subtype A1: A1.AU.03 (DQ676872), A1.KE.94 (AF004885), A1.RW.92 (AB253421); subtype A2: A2.CD.97 (AF286238), A2.CY.94 (AF286237); subtype D: D.CD.83.ELI (K03454), D.CM.01 (AY371157), D.TZ.01 (AY253311); subtype G: G.BE.96 (AF084936), G.KE.93 (AF061641), G.NG.92 (U88826); subtype J: J.CD.97 (EF614151), J.SE.93 (AF082394), J.SE.94 (AF082395); and CRF11_cpx: 11_cpx.CM.95 (AF492624). Phylogenetic reconstructions based on the neighbor-joining method and the Kimura 2-parameter distance model were computed by MEGA4 (10) and used to confirm the structures of the recombinants. Bootstrap values >80% (500 replicates) were considered significant. Vertical dashed lines indicate the position of recombination breakpoints. Numbering of residues is based on the sequence of HIV-1 HXB2 (GenBank accession no. K03455).

Main Article

References
  1. Leitner  T, Foley  B, Hahn  B, Marx  P, McCutchan  F, Mellors  J, In: Theoretical Biology and Biophysics Group, editors. HIV sequence compendium 2005. Los Alamos (NM): Los Alamos National Laboratory; 2005.
  2. Brodine  SK, Mascola  JR, Weiss  PJ, Ito  SI, Porter  KR, Artenstein  AW, Detection of diverse HIV-1 genetic subtypes in the USA. Lancet. 1995;346:11989. DOIPubMedGoogle Scholar
  3. Weidle  PJ, Ganea  CE, Irwin  KL, Pieniazed  D, McGowan  JP, Olivo  N, Presence of human immunodeficiency virus (HIV) type 1, group M, non-B subtypes, Bronx, New York: a sentinel site for monitoring HIV genetic diversity in the United States. J Infect Dis. 2000;181:4705. DOIPubMedGoogle Scholar
  4. Lin  HH, Gaschen  BK, Collie  M, El-Fishaway  M, Chen  Z, Korber  BT, Genetic characterization of diverse HIV-1 strains in an immigrant population living in New York City. J Acquir Immune Defic Syndr. 2006;41:399404. DOIPubMedGoogle Scholar
  5. Ntemgwa  M, Toni  TD, Brenner  BG, Routy  JP, Moisi  D, Oliveira  M, Near full-length genomic analysis of a novel subtype A1/C recombinant HIV type 1 isolate from Canada. AIDS Res Hum Retroviruses. 2008;24:6559. DOIPubMedGoogle Scholar
  6. Akouamba  BS, Viel  J, Charest  H, Merindol  N, Samson  J, Lapointe  N, HIV-1 genetic diversity in antenatal cohort, Canada. Emerg Infect Dis. 2005;11:12304.PubMedGoogle Scholar
  7. Thompson  JD, Gibson  TJ, Plewniak  F, Jeanmougin  F, Higgins  DG. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997;25:487682. DOIPubMedGoogle Scholar
  8. Lole  KS, Bollinger  RC, Paranjape  RS, Gadkari  D, Kulkami  SS, Novak  NG, Full-length human immunodeficiency virus type 1 genomes from subtype C–infected seroconverters in India, with evidence of intersubtype recombination. J Virol. 1999;73:15260.PubMedGoogle Scholar
  9. Zhang  C, Ding  N, Wei  JF. Different sliding window sizes and inappropriate subtype references result in discordant mosaic maps and breakpoint locations of HIV-1 CRFs. Infect Genet Evol. 2008;8:6937. DOIPubMedGoogle Scholar
  10. Tamura  K, Dudley  J, Nei  M, Kumar  S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol. 2007;24:15969. DOIPubMedGoogle Scholar
  11. Liu  TF, Shafer  RW. Web resources for HIV type 1 genotypic-resistance test interpretation. Clin Infect Dis. 2006;42:160818. DOIPubMedGoogle Scholar
  12. Novitsky  VA, Gaolekwe  S, McLane  MF, Ndung’u  TP, Foley  BT, Vannberg  F, HIV type 1 A/J recombinant with a pronounced pol gene mosaicism. AIDS Res Hum Retroviruses. 2000;16:101520. DOIPubMedGoogle Scholar
  13. Saunders-Buell  E, Saad  MD, Abed  AM, Bose  M, Todd  CS, Strathdee  SA, A nascent HIV type 1 epidemic among injecting drug users in Kabul, Afghanistan is dominated by complex AD recombinant strain, CRF35_AD. AIDS Res Hum Retroviruses. 2007;23:8349. DOIPubMedGoogle Scholar
  14. Wilbe  K, Casper  C, Albert  J, Leitner  T. Identification of two CRF11-cpx genomes and two preliminary representatives of a new circulating recombinant form (CRF13-cpx) of HIV type 1 in Cameroon. AIDS Res Hum Retroviruses. 2002;18:84956. DOIPubMedGoogle Scholar
  15. Kiwanuka  N, Laeyendecker  O, Robb  M, Kigozi  G, Arroyo  M, McCutchan  F, Effect of human immunodeficiency virus type 1 (HIV-1) subtype on disease progression in persons from Rakai, Uganda, with incident HIV-1 infection. J Infect Dis. 2008;197:70713. DOIPubMedGoogle Scholar

Main Article

Page created: July 08, 2011
Page updated: July 08, 2011
Page reviewed: July 08, 2011
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external