Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 18, Number 12—December 2012
Dispatch

West Nile Virus Neurologic Disease in Humans, South Africa, September 2008–May 2009

Dewald Zaayman and Marietjie VenterComments to Author 
Author affiliations: Author affiliations: University of Pretoria, Pretoria, South Africa (D. Zaayman, M. Venter); National Institute for Communicable Diseases, Johannesburg, South Africa (M. Venter)

Main Article

Figure

Maximum-likelihood tree of an ≈200-bp fragment of the nonstructural 5 gene of a reverse transcription PCR–positive West Nile virus (WNV) specimen SAH5238/08 (GenBank accession no. JX974605; black diamond) isolated from a human in South Africa in 2008. The tree shows the relationship of the strain to representative sequences of 5 WNV lineages, including 5 WNV lineage 2 strains isolated from horses in South Africa in 2008 (15). The scale bar indicates nucleotide substitutions per site. Bootstrap s

Figure. . Maximum-likelihood tree of an ≈200-bp fragment of the nonstructural 5 gene of a reverse transcription PCR–positive West Nile virus (WNV) specimen SAH5238/08 (GenBank accession no. JX974605; black diamond) isolated from a human in South Africa in 2008. The tree shows the relationship of the strain to representative sequences of 5 WNV lineages, including 5 WNV lineage 2 strains isolated from horses in South Africa in 2008 (15). The scale bar indicates nucleotide substitutions per site. Bootstrap statistics of >70% are indicated on the tree branches. WNV strains (accession numbers): B956 (AY532665), SA381/00 (EF429199), SA93/01 (EF429198), SPU116/89 (EF429197), Goshawk-Hungary/04 (DQ116961), H442 (EF429200), Sarafend (AY688948), Madagascar AnMg798 (DQ176636), HS123/08 (FJ464376), HS101/08 (FJ464378), SAE126/08 (FJ464379), SAE134/08 (FJ464380), HS125/08 (FJ464377), Rabensburg97103 (AY765264), LEIV-Krnd88-190 (AY277251), Kunjin (D00246), Egypt101 (AF260968), EthAn4766 (AY603654), Italy1998 (AF404757), Goose-Hungary/03 (DQ118127), NY385-99 (EF571854), TX2002 (DQ164205), Mexico2003 (AY660002), IND804994 (DQ256376), Japanese encephalitis ( HM228921).

Main Article

References
  1. Asnis  DS, Conetta  R, Teixeira  AA, Waldman  G, Sampson  BA. The West Nile virus outbreak of 1999 in New York: the Flushing Hospital experience. Clin Infect Dis. 2000;30:4138 and. DOIPubMedGoogle Scholar
  2. Lanciotti  RS, Roehrig  JT, Deubel  V, Smith  J, Parker  M, Steele  K, Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science. 1999;286:23337 and. DOIPubMedGoogle Scholar
  3. Kulasekera  VL, Kramer  L, Nasci  RS, Mostashari  F, Cherry  B, Trock  SC, West Nile virus infection in mosquitoes, birds, horses, and humans, Staten Island, New York, 2000. Emerg Infect Dis. 2001;7:7225 .DOIPubMedGoogle Scholar
  4. Sampathkumar  P. West Nile virus: epidemiology, clinical presentation, diagnosis, and prevention. Mayo Clin Proc. 2003;78:113744. DOIPubMedGoogle Scholar
  5. McIntosh  BM, Jupp  PG. Epidemics of West Nile and Sindbis viruses in South Africa with Culex (Culex) univittatus Theobald as vector. S Afr J Sci. 1976;72:295300.
  6. Jupp  PG. The ecology of West Nile virus in South Africa and the occurrence of outbreaks in humans. Ann N Y Acad Sci. 2001;951:14352. DOIPubMedGoogle Scholar
  7. Hayes  EB, Sejvar  JJ, Zaki  SR, Lanciotti  RS, Bode  AV, Campbell  GL. Virology, pathology, and clinical manifestations of West Nile virus disease. Emerg Infect Dis. 2005;11:11749. DOIPubMedGoogle Scholar
  8. Iwamoto  M, Jernigan  DB, Guasch  A, Trepka  MJ, Blackmore  CG, Hellinger  WC, Transmission of West Nile virus from an organ donor to four transplant recipients. N Engl J Med. 2003;348:2196203. DOIPubMedGoogle Scholar
  9. Zaayman  D, Human  S, Venter  M. A highly sensitive method for the detection and genotyping of West Nile virus by real-time PCR. J Virol Methods. 2009;157:15560. DOIPubMedGoogle Scholar
  10. Grandien  M, Forsgren  M, Ehrnst  A. Enteroviruses and reoviruses. 6th ed. Washington (DC): American Public Health Association; 1989.
  11. Venter  M, Burt  FJ, Blumberg  L, Fickl  H, Paweska  J, Swanepoel  R. Cytokine induction after laboratory-acquired West Nile virus infection. N Engl J Med. 2009;360:12602. DOIPubMedGoogle Scholar
  12. Tamura  K, Peterson  D, Peterson  N, Stecher  G, Nei  M, Kumar  S. MEGA5: Molecular Evolutionary genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:27319. DOIPubMedGoogle Scholar
  13. Lanciotti  RS, Kerst  AJ, Nasci  RS, Godsey  MS, Mitchell  CJ, Savage  HM, Rapid detection of West Nile virus from human clinical specimens, field-collected mosquitoes, and avian samples by a TaqMan reverse transcriptase–PCR assay. J Clin Microbiol. 2000;38:406671 .PubMedGoogle Scholar
  14. Castillo-Olivares  J, Mansfield  KL, Phipps  LP, Johnson  N, Tearle  J, Fooks  AR. Antibody response in horses following experimental infection with West Nile virus lineages 1 and 2. Transbound Emerg Dis. 2011;58:20612.
  15. Venter  M, Swanepoel  R. West Nile virus lineage 2 as a cause of zoonotic neurological disease in humans and horses in southern Africa. Vector Borne Zoonotic Dis. 2010;10:65964. DOIPubMedGoogle Scholar

Main Article

Page created: November 20, 2012
Page updated: November 20, 2012
Page reviewed: November 20, 2012
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external