Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 18, Number 3—March 2012
Dispatch

Clinical Significance of Escherichia albertii

Tadasuke Ooka, Kazuko Seto, Kimiko Kawano, Hideki Kobayashi, Yoshiki Etoh, Sachiko Ichihara, Akiko Kaneko, Junko Isobe, Keiji Yamaguchi, Kazumi Horikawa, Tânia A.T. Gomes, Annick Linden, Marjorie Bardiau, Jacques G. Mainil, Lothar Beutin, Yoshitoshi Ogura, and Tetsuya HayashiComments to Author 
Author affiliations: University of Miyazaki, Miyazaki, Japan (T. Ooka, Y. Ogura, T. Hayashi); Osaka Prefectural Institute of Public Health, Osaka, Japan (K. Seto); Miyazaki Prefectural Institute for Public Health and Environment, Miyazaki (K. Kawano); National Institute of Animal Health, Ibaraki, Japan (H. Kobayashi); Fukuoka Institute of Health and Environmental Sciences, Fukuoka, Japan (Y. Etoh, S. Ichihara, K. Horikawa); Yamagata Prefectural Institute of Public Health, Yamagata, Japan (A. Kaneko); Toyama Institute of Health, Toyama, Japan (J. Isobe); Hokkaido Institute of Public Health, Hokkaido, Japan (K. Yamaguchi); Universidade Federal de São Paulo, São Paulo, Brazil (T.A.T. Gomes); University of Liège, Liège, Belgium (A. Linden, M. Bardiau, J.G. Mainil); Federal Institute for Risk Assessment, Berlin, Germany (L. Beutin)

Main Article

Table 2

Comparison of biochemical properties of Escherichia spp. strains

Agent or test 26 E. albertii strains (this study)† E. albertii LMG20976 (type strain) E. albertii strains (9) E. coli (11)†
Indole 96.2 100 98
Motility 0 0 95
Urea 0 0 1
ONPG 88.5 + ND ND
MUG 0 ND (+)‡
Citrate 0 0 1
Acetate 92.3 + ND 90
Malonate 0 ND 0
H2S on triple sugar iron 0 ND 1
Voges-Proskauer 0 ND 0
Lysine decarboxylase 100 + 100 90
Ornithine decarboxylase 100 + 100 65
Arginine dihydrolase 0 0 17
Glucose, acid 100 + 100 100
Glucose, gas 100 + 100 95
Acid from
Adonitol 0 ND 0
l-arabinose 100 + 100 99
Cellobiose 0 ND 2
Dulcitol 0 ND 60
Myo-inositol 0 ND 1
Lactose 3.9 0 95
Maltose 88.5 + ND 95
Mannitol 100 + 100 100
l-rhamnose 0 0 0
Salicin 26.9 ND 40
d-sorbitol 57.7 V 94
Sucrose 19.2 0 50
Trehalose 96.2 + ND 98
d-xylose 0 0 95

*ONPG, ortho-Nitrophenyl-β-galactoside; MUG, methylumbelliferyl-β-D-glucuronide; –, negative; +, positive: ND, not determined.
†Average (%) of positive strains.
‡Most E. coli strains produce β-D-glucuronidase.

Main Article

References
  1. Croxen  MA, Finlay  BB. Molecular mechanisms of Escherichia coli pathogenicity. Nat Rev Microbiol. 2010;8:2638.PubMedGoogle Scholar
  2. Schmidt  MA. LEEways: tales of EPEC, ATEC and EHEC. Cell Microbiol. 2010;12:154452. DOIPubMedGoogle Scholar
  3. Albert  MJ, Alam  K, Islam  M, Montanaro  J, Rahman  AS, Haider  K, Hafnia alvei, a probable cause of diarrhea in humans. Infect Immun. 1991;59:150713.PubMedGoogle Scholar
  4. Albert  MJ, Faruque  SM, Ansaruzzaman  M, Islam  MM, Haider  K, Alam  K, Sharing of virulence-associated properties at the phenotypic and genetic levels between enteropathogenic Escherichia coli and Hafnia alvei. J Med Microbiol. 1992;37:3104. DOIPubMedGoogle Scholar
  5. Huys  G, Cnockaert  M, Janda  JM, Swings  J. Escherichia albertii sp. nov., a diarrhoeagenic species isolated from stool specimens of Bangladeshi children. Int J Syst Evol Microbiol. 2003;53:80710. DOIPubMedGoogle Scholar
  6. Janda  JM, Abbott  SL, Albert  MJ. Prototypal diarrheagenic strains of Hafnia alvei are actually members of the genus Escherichia. J Clin Microbiol. 1999;37:2399401.PubMedGoogle Scholar
  7. Abbott  SL, O'Connor  J, Robin  T, Zimmer  BL, Janda  JM. Biochemical properties of a newly described Escherichia species, Escherichia albertii. J Clin Microbiol. 2003;41:48524. DOIPubMedGoogle Scholar
  8. Hyma  KE, Lacher  DW, Nelson  AM, Bumbaugh  AC, Janda  JM, Strockbine  NA, Evolutionary genetics of a new pathogenic Escherichia species: Escherichia albertii and related Shigella boydii strains. J Bacteriol. 2005;187:61928. DOIPubMedGoogle Scholar
  9. Oaks  JL, Besser  TE, Walk  ST, Gordon  DM, Beckmen  KB, Burek  KA, Escherichia albertii in wild and domestic birds. Emerg Infect Dis. 2010;16:63846 .DOIPubMedGoogle Scholar
  10. Blanco  M, Schumacher  S, Tasara  T, Zweifel  C, Blanco  JE, Dahbi  G, Serotypes, intimin variants and other virulence factors of eae positive Escherichia coli strains isolated from healthy cattle in Switzerland. Identification of a new intimin variant gene (eae-eta2). BMC Microbiol. 2005;5:23. DOIPubMedGoogle Scholar
  11. Nataro  JP, Bopp  CA, Fields  PI, Kaper  JB, Strockbine  NA. Escherichia, Shigella, and Salmonella. In: Murray PR, Baron EJ, Jorgensen JH, Landry ML, Pfaller MA, editors. Manual of clinical microbiology, 9th ed. Washington: ASM Press; 2007. p. 670–87.

Main Article

Page created: February 15, 2012
Page updated: February 15, 2012
Page reviewed: February 15, 2012
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external