Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 19, Number 4—April 2013
Letter

Novel Hantavirus in Wildlife, United Kingdom

Kieran C. Pounder, Michael Begon, Tarja Sironen, Heikki Henttonen, Phillip C. Watts, Liina Voutilainen, Olli Vapalahti, Boris Klempa, Anthony R. Fooks, and Lorraine M. McElhinneyComments to Author 
Author affiliations: University of Liverpool, Liverpool, UK (K.C. Pounder, M. Begon, P.C. Watts); University of Helsinki, Helsinki, Finland (T. Sironen, L. Voutilainen, O. Vapalahti); Finnish Forest Research Institute, Vantaa, Finland (H. Henttonen, L. Voutilainen); Slovak Academy of Sciences, Bratislava, Slovakia (B. Klempa); Charité School of Medicine, Berlin, Germany (B. Klempa); Animal Health and Veterinary Laboratories Agency, Surrey, UK (A.R. Fooks, L.M. McElhinney); University of Liverpool, National Consortium for Zoonosis Research, South Wirral, UK (A.R. Fooks, L.M. McElhinney)

Main Article

Figure

Bayesian phylogenetic trees constructed by using the models HKY+gamma for partial large segment sequences (n = 19) (A) and GTR+gamma for partial small segment sequences (n = 39) (B) within BEAST software (6) with Markov chain Monte Carlo chain lengths of 10 million and strict clock. Optimum substitution models were estimated by using MEGA5 (7). The trees are drawn to scale; branch lengths are measured in the number of substitutions per site. The numbers at each node are posterior probabilities.

Figure. . . Bayesian phylogenetic trees constructed by using the models HKY+gamma for partial large segment sequences (n = 19) (A) and GTR+gamma for partial small segment sequences (n = 39) (B) within BEAST software (6) with Markov chain Monte Carlo chain lengths of 10 million and strict clock. Optimum substitution models were estimated by using MEGA5 (7). The trees are drawn to scale; branch lengths are measured in the number of substitutions per site. The numbers at each node are posterior probabilities. All effective sample size values exceeded 150 for partial L and 1,600 for partial S sequences. The phylogenetic position of virus isolated from field vole B41 (in boldface) is shown in relation to representative hantaviruses (A) and more closely related Arvicolinae-associated hantaviruses (B). GenBank accession numbers are shown next to taxonomic names. Scale bars indicate nucleotide substitutions per site. VLAV, Vladivostok virus; TOPV, Topografov virus; KHAV, Khabarovsk virus; PUUV, Puumala virus; HOKV, Hokkaido virus; MUJV, Muju virus; PHV, Prospect Hill virus; ISLAV, Isla Vista virus; TULV, Tula virus; LANV, Laguna Negra virus; ANDV, Andes virus; SNV, Sin Nombre virus; NYV, New York virus.

Main Article

References
  1. Vaheri  A, Henttonen  H, Voutilainen  L, Mustonen  J, Sironen  T, Vapalahti  O. Hantavirus infections in Europe and their impact on public health. Rev Med Virol. 2013;23:3549.
  2. Olsson  GE, Leirs  H, Henttonen  H. Hantaviruses and their hosts in Europe: reservoirs here and there, but not everywhere? Vector Borne Zoonotic Dis. 2010;10:54961 . DOIPubMedGoogle Scholar
  3. McCaughey  C, Hart  CA. Hantaviruses. J Med Microbiol. 2000;49:58799 .PubMedGoogle Scholar
  4. Fhogartaigh  CN, Newsholme  W, Kinirons  M, Tong  W. An emerging infectious cause of renal impairment in the UK. BMJ Case Rep. 2011. pii: bcr0620114326.
  5. Klempa  B, Fichet-Calvet  E, Lecompte  E, Auste  B, Aniskin  V, Meisel  H, Hantavirus in African wood mouse, Guinea. Emerg Infect Dis. 2006;12:83840 . DOIPubMedGoogle Scholar
  6. Drummond  AJ, Rambaut  A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 2007;7:214 . DOIPubMedGoogle Scholar
  7. Tamura  K, Peterson  D, Peterson  N, Stecher  G, Nei  M, Kumar  S. MEGA5: Molecular Evolutionary Genetics Analysis using maximum-likelihood, evolutionary distance, and maximum-parsimony methods. Mol Biol Evol. 2011;28:27319. DOIPubMedGoogle Scholar
  8. Vaheri  A, Vapalahti  O, Plyusnin  A. How to diagnose hantavirus infections and detect them in rodents and insectivores. Rev Med Virol. 2008;18:27788. DOIPubMedGoogle Scholar
  9. Schlegel  M, Ali  HS, Stieger  N, Groschup  MH, Wolf  R, Ulrich  RG. Molecular identification of small mammal species using novel cytochrome B gene–derived degenerated primers. Biochem Genet. 2012;50:4407. DOIPubMedGoogle Scholar
  10. Schmidt-Chanasit  J, Essbauer  S, Petraityte  R, Yoshimatsu  K, Tackmann  K, Conraths  FJ, Extensive host sharing of central European Tula virus. J Virol. 2010;84:45974 . DOIPubMedGoogle Scholar

Main Article

Page created: March 13, 2013
Page updated: March 13, 2013
Page reviewed: March 13, 2013
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external