Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 20, Number 8—August 2014
Research

Global and Local Persistence of Influenza A(H5N1) Virus

Xianbin Li, Zhong Zhang, Ailian Yu, Simon Y. W. Ho, Michael J. Carr, Weimin Zheng, Yanzhou Zhang, Chaodong Zhu1, Fumin Lei1, and Weifeng Shi1Comments to Author 
Author affiliations: Chinese Academy of Sciences, Shenzhen, China (X. Li); Taishan Medical College, Taian, Shandong, China (Z. Zhang, A. Yu, W. Shi); Chinese Academy of Sciences, Beijing, China (X. Li, W. Zheng, Y. Zhang, C. Zhu, F. Lei); University of Sydney, Sydney, New South Wales, Australia (S.Y.W. Ho); University College Dublin, Dublin, Ireland (M.J. Carr); 1These authors contributed equally to this article.

Main Article

Table 1

Statistical analysis of geographic structure for highly pathogenic avian influenza A(H5N1) viruses*

Observed mean 95% CI Null mean 95% CI Significance, p value
South Korea and Japan 50.44 49.0–68.0 1.66 1.19–2.04 0.001
Siberia 8.90 8.0–11.0 1.59 1.11–2.01 0.001
Southeast Asia 311.54 296.0–440.0 4.57 3.93–5.95 0.001
Africa 47.73 38.0–64.0 3.55 3.12–4.30 0.001
Hong Kong 17.00 17.0–17.0 1.99 1.65–2.24 0.001
China 32.88 28.0–42.0 3.74 3.23–4.65 0.001
Europe 80.08 80.0–80.0 2.21 2.01–3.00 0.001
Central and western Asia 5.23 3.0–8.0 1.32 1.00–2.00 0.001
Southern Asia 106.00 106.0–106.0 2.03 1.75–2.30 0.001

*Analyzed by using Bayesian Analysis of Time Series (27).

Main Article

References
  1. Kilpatrick  AM, Chmura  AA, Gibbons  DW, Fleischer  RC, Marra  PP, Daszak  P. Predicting the global spread of H5N1 avian influenza. Proc Natl Acad Sci U S A. 2006;103:1936873. DOIPubMedGoogle Scholar
  2. Gauthier-Clerc  M, Lebarbenchon  C, Thomas  F. Recent expansion of highly pathogenic avian influenza H5N1: a critical review. Ibis. 2007;149:20214. DOIGoogle Scholar
  3. Altizer  S, Bartel  R, Han  BA. Animal migration and infectious disease risk. Science. 2011;331:296. DOIPubMedGoogle Scholar
  4. Xu  X. Subbarao, Cox NJ, Guo Y. Genetic characterization of the pathogenic influenza A/goose/Guangdong/1/96 (H5N1) virus: similarity of its hemagglutinin gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong. Virology. 1999;261:159. DOIPubMedGoogle Scholar
  5. World Health Organization. Cumulative number of confirmed human cases of avian influenza A(H5N1) reported to WHO, 2003–2013. 2013 June 4 [cited 2013 Jun 11]. http://www.who.int/influenza/human_animal_interface/EN_GIP_20130604CumulativeNumberH5N1cases.pdf
  6. Nelson  MI, Simonsen  L, Viboud  C, Miller  MA, Holmes  EC. Phylogenetic analysis reveals the global migration of seasonal influenza A viruses. PLoS Pathog. 2007;3:12208. DOIPubMedGoogle Scholar
  7. Rambaut  A, Pybus  OG, Nelson  MI, Viboud  C, Taubenberger  JK, Holmes  EC. The genomic and epidemiological dynamics of human influenza A virus. Nature. 2008;453:6159. DOIPubMedGoogle Scholar
  8. Russell  CA, Jones  TC, Barr  IG, Cox  NJ, Garten  RJ, Gregory  V, The global circulation of seasonal influenza A (H3N2) viruses. Science. 2008;320:3406. DOIPubMedGoogle Scholar
  9. Bedford  T, Cobey  S, Beerli  P, Pascual  M. Global migration dynamics underlie evolution and persistence of human influenza A (H3N2). PLoS Pathog. 2010;6:e1000918. DOIPubMedGoogle Scholar
  10. Chan  J, Holmes  A, Rabadan  R. Network analysis of global influenza spread. PLOS Comput Biol. 2010;6:e1001005. DOIPubMedGoogle Scholar
  11. Le  MQ, Lam  HM, Cuong  VD, Lam  TT, Halpin  RA, Wentworth  DE, Migration and persistence of human influenza A viruses, Vietnam, 2001–2008. Emerg Infect Dis. 2013;19:175665. DOIPubMedGoogle Scholar
  12. Bahl  J, Nelson  MI, Chan  KH, Chen  R, Vijaykrishna  D, Halpin  RA, Temporally structured metapopulation dynamics and persistence of influenza A H3N2 virus in humans. Proc Natl Acad Sci U S A. 2011;108:1935964. DOIPubMedGoogle Scholar
  13. Wu  B, Wang  C, Dong  G, Guo  Y, Nolte  DL, Deliberto  TJ, New evidence suggests southern China as a common source of multiple clusters of highly pathogenic H5N1 avian influenza virus. J Infect Dis. 2010;202:4528. DOIPubMedGoogle Scholar
  14. Wallace  RG, Hodac  H, Lathrop  RH, Fitch  WM. A statistical phylogeography of influenza A H5N1. Proc Natl Acad Sci U S A. 2007;104:44738. DOIPubMedGoogle Scholar
  15. Wallace  RG, Fitch  WM. Influenza A H5N1 immigration is filtered out at some international borders. PLoS ONE 2008;3(2):e1697. PMID: 18301773 DOIGoogle Scholar
  16. Smith  GJ, Fan  XH, Wang  J, Li  KS, Qin  K, Zhang  JX, Emergence and predominance of an H5N1 influenza variant in China. Proc Natl Acad Sci U S A. 2006;103:1693641. DOIPubMedGoogle Scholar
  17. Wang  J, Vijaykrishna  D, Duan  L, Bahl  J, Zhang  JX, Webster  RG, Identification of the progenitors of Indonesian and Vietnamese avian influenza A (H5N1) viruses from southern China. J Virol. 2008;82:340514. DOIPubMedGoogle Scholar
  18. Guan  Y, Smith  GJ, Webby  R, Webster  RG. Molecular epidemiology of H5N1 avian influenza. Rev Sci Tech. 2009;28:3947 .PubMedGoogle Scholar
  19. Liang  L, Xu  B, Chen  Y, Liu  Y, Cao  W, Fang  L, Combining spatial-temporal and phylogenetic analysis approaches for improved understanding on global H5N1 transmission. PLoS ONE. 2010;5:e13575. DOIPubMedGoogle Scholar
  20. Drummond  AJ, Rambaut  A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 2007;7:214. DOIPubMedGoogle Scholar
  21. Beerli  P, Felsenstein  J. Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Natl Acad Sci U S A. 2001;98:45638. DOIPubMedGoogle Scholar
  22. Beerli  P. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics. 2006;22:3415. DOIPubMedGoogle Scholar
  23. Edgar  RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:17927. DOIPubMedGoogle Scholar
  24. Hudson  RR, Slatkin  M, Maddison  WP. Estimation of levels of gene flow from DNA sequence data. Genetics. 1992;132:5839 .PubMedGoogle Scholar
  25. Drummond  AJ, Ho  SYW, Phillips  MJ, Rambaut  A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 2006;4:e88. DOIPubMedGoogle Scholar
  26. Hasegawa  M, Kishino  H, Yano  T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol. 1985;22:16074. DOIPubMedGoogle Scholar
  27. Parker  J, Rambaut  A, Pybus  OG. Correlating viral phenotypes with phylogeny: accounting for phylogenetic uncertainty. Infect Genet Evol. 2008;8:23946. DOIPubMedGoogle Scholar
  28. Brooks  SP, Gelman  A. General methods for monitoring convergence of iterative simulations. J Comput Graph Stat. 1998;7:43455 .DOIGoogle Scholar
  29. Minin  VN, Bloomquist  EW, Suchard  MA. Smooth skyride through a rough skyline: Bayesian coalescent-based inference of population dynamics. Mol Biol Evol. 2008;25:145971. DOIPubMedGoogle Scholar
  30. Nelson  MI, Holmes  EC. The evolution of epidemic influenza. Nat Rev Genet. 2007;8:196205. DOIPubMedGoogle Scholar
  31. Tang  JW, Ngai  KLK, Lam  WY, Chan  PKS. Seasonality of influenza A (H3N2) virus: a Hong Kong perspective (1997–2006). PLoS ONE. 2008;3:e2768. DOIPubMedGoogle Scholar
  32. Liu  J, Xiao  H, Lei  F, Zhu  Q, Qin  K, Zhang  XW, Highly pathogenic H5N1 influenza virus infection in migratory birds. Science. 2005;309:1206. DOIPubMedGoogle Scholar
  33. Takekawa  JY, Prosser  DJ, Newman  SH, Muzaffar  SB, Hill  NJ, Yan  B, Victims and vectors: highly pathogenic avian influenza H5N1 and the ecology of wild birds. Avian Biology Research. 2010;3:51–73.
  34. Si  Y, Skidmore  AK, Wang  T, de Boer  WF, Debba  P. Spatiotemporal dynamics of global outbreaks match bird migration patterns. Geospat Health. 2009;4:6578 .PubMedGoogle Scholar
  35. Prosser  DJ, Cui  P, Takekawa  JY, Tang  M, Hou  Y, Collins  BM, Wild bird migration across the Qinghai-Tibetan Plateau: a potential transmission route for highly pathogenic H5N1. PLoS ONE. 2011;6:e17622. DOIPubMedGoogle Scholar
  36. Chen  H, Li  Y, Li  Z, Shi  J, Shinya  K, Deng  G, Properties and dissemination of H5N1 viruses isolated during an influenza outbreak in migratory waterfowl in western China. J Virol. 2006;80:597683. DOIPubMedGoogle Scholar
  37. Newman  SH, Hill  NJ, Spragens  KA, Janies  D, Voronkin  IO, Prosser  DJ, Eco-virological approach for assessing the role of wild birds in the spread of avian influenza H5N1 along the Central Asian flyway. PLoS ONE. 2012;7:e30636. DOIPubMedGoogle Scholar
  38. Guan  Y, Webby  R, Capua  I, Waldenström  J. H5N1: how to track a flu virus. Nature. 2012;483:5356. DOIPubMedGoogle Scholar

Main Article

Page created: July 18, 2014
Page updated: July 18, 2014
Page reviewed: July 18, 2014
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external