Volume 21, Number 10—October 2015
CME ACTIVITY - Synopsis
Invasive Disease Caused by Nontypeable Haemophilus influenzae
Table
Location | Period of strain collection | Surveillance method | Typing method | Changes in NTHi cases or incidence† | Serotyped Hi isolates, no. | Serotype b isolates, % | Non–serotype b isolates, % | NTHi isolates, % | Ref |
---|---|---|---|---|---|---|---|---|---|
Canada | 1989–2007 | Active, prospective surveillance | SA | Increased incidence | 1,455 | 20 | 17 | 62 | (1) |
Canada | 2000–2006 | Nationwide surveillance | SA+PCR | No change | 122 | 4 | 39 | 57 | (2) |
Europe | 1996–2006 | European Union Invasive Bacterial Infection Surveillance | SA or PCR | No change | 7,992 | 35 | 9 | 56 | (3) |
Germany | 2001–2004 | Nationwide surveillance | Not reported | NA | 147 | 40 | 14 | 46 | (4) |
Israel‡ | 2003–2012 | Nationwide prospective surveillance | SA | No change | 389 | 26 | 11 | 62 | (5) |
Multiple§ | 2000–2008 | Active population-based surveillance | Not reported | No change | 398 | 6 | 17 | 77 | (6) |
Portugal | 2002–2010 | Laboratory-based passive surveillance | PCR | Increased cases | 144 | 13 | 10 | 77 | (7) |
Slovenia | 2000–2008 | National surveillance | PCR | Increased incidence | 108¶ | 13 | 2 | 85 | (8) |
Spain | 2004–2009 | Nationwide surveillance | PCR | NA | 307 | 5 | 8 | 87 | (9) |
Spain | 2008–2013 | Laboratory-based study | SA | NA | 70 | 1 | 14 | 85 | (10) |
Sweden | 1997–2009 | Retrospective laboratory-based study | PCR | Increased cases or incidence | 268# | 11 | 18 | 71 | (11) |
Taiwan | 1999–2002 | National surveillance | SA | NA | 10 | 20 | 0 | 80 | (12) |
USA, Alaska | 1991–1996 | Active surveillance | SA | NA | 40 | 14 | 31 | 54 | (13) |
USA, Arkansas | 1993–2001 | Retrospective laboratory-based study | SA | NA | 33 | 3 | 6 | 91 | (14) |
USA, Utah | 1998–2008 | Passive surveillance | SA | Increased cases or incidence | 101 | 9 | 49 | 43 | (15) |
USA, Illinois | 1996–2004 | Passive surveillance | SA | Increased incidence | 522 | 15 | 31 | 54 | (16) |
USA | 1999–2008 | Active surveillance | SA | Increased incidence | 4190 | 4 | 26 | 70 | (17,18) |
*Hi, Haemophilus influenzae; NA, not applicable due to limited sample size (<100 isolates) or lack of year-to-year data; NTHi, nontypeable Haemophilus influenzae; Ref, reference (see online Technical Appendix, http://wwwnc.cdc.gov/EID/article/21/10/15-0004-Techapp.pdf); SA, slide agglutination; SA+PCR, slide agglutination positive isolates confirmed by PCR.
†Increased cases = increase in number of NTHi cases in patients >1 years of age; Increased incidence = increase in NTHi incidence rate in patients >1 year of age; No change = no difference in number or incidence rate of NTHi cases.
‡Pediatric cases (<15 years of age) only.
§Australia, Canada, and Denmark.
¶PCR-typed isolates from post-Hib vaccination era only.
#PCR-typed isolates only.
*
References
- Van Eldere J, Slack MP, Ladhani S, Cripps AW. Non-typeable Haemophilus influenzae, an under-recognised pathogen. Lancet Infect Dis. 2014;14:1281–92. DOIPubMedGoogle Scholar
- Adam HJ, Richardson SE, Jamieson FB, Rawte P, Low DE, Fisman DN. Changing epidemiology of invasive Haemophilus influenzae in Ontario, Canada: evidence for herd effects and strain replacement due to Hib vaccination. Vaccine. 2010;28:4073–8. DOIPubMedGoogle Scholar
- Biesbroek G, Wang X, Keijser BJ, Eijkemans RM, Trzcinski K, Rots NY, Seven-valent pneumococcal conjugate vaccine and nasopharyngeal microbiota in healthy children. Emerg Infect Dis. 2014;20:201–10. DOIPubMedGoogle Scholar
- Resman F, Ristovski M, Ahl J, Forsgren A, Gilsdorf JR, Jasir A, Invasive disease caused by Haemophilus influenzae in Sweden 1997–2009; evidence of increasing incidence and clinical burden of non-type b strains. Clin Microbiol Infect. 2011;17:1638–45. DOIPubMedGoogle Scholar
- Spijkerman J, Prevaes SM, van Gils EJ, Veenhoven RH, Bruin JP, Bogaert D, Long-term effects of pneumococcal conjugate vaccine on nasopharyngeal carriage of S. pneumoniae, S. aureus, H. influenzae and M. catarrhalis. PLoS ONE. 2012;7:e39730. DOIPubMedGoogle Scholar
- Academic Medical Center; National Institute of Public Health and the Environment. Bacterial meningitis in the Netherlands annual report 2013. Amsterdam: Netherlands Reference Laboratory for Bacterial Meningitis; 2014 [cited 2014 Nov 14]. http://www.amc.nl/web/file?uuid=4160e2a0-0b21-4d2b-a3e3-3538d75b880f&owner=7a3a0763-4af0-41eb-b207-963f8d0db459
- Kastrin T, Paragi M, Kolman J, Cizman M, Kraigher A, Gubina M, Characterisation of invasive Haemophilus influenzae isolates in Slovenia, 1993–2008. Eur J Clin Microbiol Infect Dis. 2010;29:661–8. DOIPubMedGoogle Scholar
- MacNeil JR, Cohn AC, Farley M, Mair R, Baumbach J, Bennett N, Current epidemiology and trends in invasive Haemophilus influenzae disease—United States, 1989–2008. Clin Infect Dis. 2011;53:1230–6. DOIPubMedGoogle Scholar
- van Wessel K, Rodenburg GD, Veenhoven RH, Spanjaard L, van der Ende A, Sanders EA. Nontypeable Haemophilus influenzae invasive disease in The Netherlands: a retrospective surveillance study 2001–2008. Clin Infect Dis. 2011;53:e1–7. DOIPubMedGoogle Scholar
- Cremers AJ, Sprong T, Schouten JA, Walraven G, Hermans PW, Meis JF, Effect of antibiotic streamlining on patient outcome in pneumococcal bacteraemia. J Antimicrob Chemother. 2014;69:2258–64. DOIPubMedGoogle Scholar
- Brown VM, Madden S, Kelly L, Jamieson FB, Tsang RS, Ulanova M. Invasive Haemophilus influenzae disease caused by non-type b strains in Northwestern Ontario, Canada, 2002–2008. Clin Infect Dis. 2009;49:1240–3. DOIPubMedGoogle Scholar
- Millar EV, O’Brien KL, Watt JP, Lingappa J, Pallipamu R, Rosenstein N, Epidemiology of invasive Haemophilus influenzae type A disease among Navajo and White Mountain Apache children, 1988–2003. Clin Infect Dis. 2005;40:823–30. DOIPubMedGoogle Scholar
- Bruce MG, Deeks SL, Zulz T, Navarro C, Palacios C, Case C, Epidemiology of Haemophilus influenzae serotype a, North American Arctic, 2000–2005. Emerg Infect Dis. 2008;14:48–55. DOIPubMedGoogle Scholar
- Ladhani SN, Collins S, Vickers A, Litt DJ, Crawford C, Ramsay ME, Invasive Haemophilus influenzae serotype e and f disease, England and Wales. Emerg Infect Dis. 2012;18:725–32 .DOIPubMedGoogle Scholar
- Sutton A, Schneerson R, Kendall-Morris S, Robbins JB. Differential complement resistance mediates virulence of Haemophilus influenzae type b. Infect Immun. 1982;35:95–104 .PubMedGoogle Scholar
- Lipsitch M. Vaccination against colonizing bacteria with multiple serotypes. Proc Natl Acad Sci U S A. 1997;94:6571–6. DOIPubMedGoogle Scholar
- Berndsen MR, Erlendsdottir H, Gottfredsson M. Evolving epidemiology of invasive Haemophilus infections in the post-vaccination era: results from a long-term population-based study. Clin Microbiol Infect. 2012;18:918–23. DOIPubMedGoogle Scholar
- Block SL, Hedrick J, Harrison CJ, Tyler R, Smith A, Findlay R, Community-wide vaccination with the heptavalent pneumococcal conjugate significantly alters the microbiology of acute otitis media. Pediatr Infect Dis J. 2004;23:829–33. DOIPubMedGoogle Scholar
- Casey JR, Pichichero ME. Changes in frequency and pathogens causing acute otitis media in 1995–2003. Pediatr Infect Dis J. 2004;23:824–8. DOIPubMedGoogle Scholar
- Tamir SO, Roth Y, Dalal I, Goldfarb A, Grotto I, Marom T. Changing trends of acute otitis media bacteriology in central Israel in the pneumococcal conjugate vaccines era. Pediatr Infect Dis J. 2015;34:195–9. DOIPubMedGoogle Scholar
- Wang X, Mair R, Hatcher C, Theodore MJ, Edmond K, Wu HM, Detection of bacterial pathogens in Mongolia meningitis surveillance with a new real-time PCR assay to detect Haemophilus influenzae. Int J Med Microbiol. 2011;301:303–9. DOIPubMedGoogle Scholar
- Satola SW, Collins JT, Napier R, Farley MM. Capsule gene analysis of invasive Haemophilus influenzae: accuracy of serotyping and prevalence of IS1016 among nontypeable isolates. J Clin Microbiol. 2007;45:3230–8. DOIPubMedGoogle Scholar
- Davis GS, Sandstedt SA, Patel M, Marrs CF, Gilsdorf JR. Use of bexB to detect the capsule locus in Haemophilus influenzae. J Clin Microbiol. 2011;49:2594–601. DOIPubMedGoogle Scholar
- Mell JC, Lee JY, Firme M, Sinha S, Redfield RJ. Extensive cotransformation of natural variation into chromosomes of naturally competent Haemophilus influenzae. G3 (Bethesda). 2014;4:717–31. PMID: 24569039. http://dx.doi:DOIGoogle Scholar
- Langereis JD, Stol K, Schweda EK, Twelkmeyer B, Bootsma HJ, de Vries SP, Modified lipooligosaccharide structure protects nontypeable Haemophilus influenzae from IgM-mediated complement killing in experimental otitis media. MBio. 2012;3:e00079-12. DOIPubMedGoogle Scholar
- Langereis JD, van Dongen TM, Stol K, Venekamp RP, Schilder AG, Hermans PW. Resistance to complement-mediated killing and IgM binding to non-typeable Haemophilus influenzae is not altered when ascending from the nasopharynx to the middle ears in children with otitis media. Med Microbiol Immunol (Berl). 2013;202:407–15. DOIPubMedGoogle Scholar
- Fox KL, Atack JM, Srikhanta YN, Eckert A, Novotny LA, Bakaletz LO, Selection for phase variation of LOS biosynthetic genes frequently occurs in progression of non-typeable Haemophilus influenzae infection from the nasopharynx to the middle ear of human patients. PLoS ONE. 2014;9:e90505. DOIPubMedGoogle Scholar
- Bajanca-Lavado MP, Simoes AS, Betencourt CR, Sa-Leao R. The Portuguese Group for Study of Haemophilus influenzae invasive infection. Characteristics of Haemophilus influenzae invasive isolates from Portugal following routine childhood vaccination against H. influenzae serotype b (2002–2010). Eur J Clin Microbiol Infect Dis. 2014;33:603–10. DOIPubMedGoogle Scholar
- Langereis JD, Weiser JN. Shielding of a lipooligosaccharide IgM epitope allows evasion of neutrophil-mediated killing of an invasive strain of nontypeable Haemophilus influenzae. MBio. 2014;5:e01478-14. DOIPubMedGoogle Scholar
- Hallström T, Resman F, Ristovski M, Riesbeck K. Binding of complement regulators to invasive nontypeable Haemophilus influenzae isolates is not increased compared to nasopharyngeal isolates, but serum resistance is linked to disease severity. J Clin Microbiol. 2010;48:921–7. DOIPubMedGoogle Scholar
- Zwahlen A, Kroll JS, Rubin LG, Moxon ER. The molecular basis of pathogenicity in Haemophilus influenzae: comparative virulence of genetically-related capsular transformants and correlation with changes at the capsulation locus cap. Microb Pathog. 1989;7:225–35. DOIPubMedGoogle Scholar
- De Chiara M, Hood D, Muzzi A, Pickard DJ, Perkins T, Pizza M, Genome sequencing of disease and carriage isolates of nontypeable Haemophilus influenzae identifies discrete population structure. Proc Natl Acad Sci U S A. 2014;111:5439–44. DOIPubMedGoogle Scholar
- Fleury C, Su YC, Hallstrom T, Sandblad L, Zipfel PF, Riesbeck K. Identification of a Haemophilus influenzae factor H–binding lipoprotein involved in serum resistance. J Immunol. 2014;192:5913–23. DOIPubMedGoogle Scholar
- Blain A, MacNeil J, Wang X, Bennett N, Farley MM, Harrison LH, Invasive Haemophilus influenzae disease in adults >65 years, United States. Open Forum Infect Dis. 2011;2014:1:ofu044. PMID: 25734116. http://dx.doi:10.1093/ofid/ofu044
- Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2095–128. DOIPubMedGoogle Scholar
- Hawdon N, Biman B, McCready W, Brigden M, Malik S, Vergidis D, Antibody against Haemophilus influenzae protein D in patients with chronic conditions causing secondary immunodeficiency. Vaccine. 2012;30:1235–8. DOIPubMedGoogle Scholar
- Nakamura S, Shchepetov M, Dalia AB, Clark SE, Murphy TF, Sethi S, Molecular basis of increased serum resistance among pulmonary isolates of non-typeable Haemophilus influenzae. PLoS Pathog. 2011;7:e1001247. DOIPubMedGoogle Scholar
- Micol R, Kayal S, Mahlaoui N, Beaute J, Brosselin P, Dudoit Y, Protective effect of IgM against colonization of the respiratory tract by nontypeable Haemophilus influenzae in patients with hypogammaglobulinemia. J Allergy Clin Immunol. 2012;129:770–7. DOIPubMedGoogle Scholar
- Shi Y, Agematsu K, Ochs HD, Sugane K. Functional analysis of human memory B-cell subpopulations: IgD+CD27+ B cells are crucial in secondary immune response by producing high affinity IgM. Clin Immunol. 2003;108:128–37. DOIPubMedGoogle Scholar
- Shaw AC, Goldstein DR, Montgomery RR. Age-dependent dysregulation of innate immunity. Nat Rev Immunol. 2013;13:875–87. DOIPubMedGoogle Scholar
Page created: September 11, 2015
Page updated: September 11, 2015
Page reviewed: September 11, 2015
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.