Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 21, Number 11—November 2015
Research

Carbapenem-Resistant Enterobacteriaceae in Children, United States, 1999–2012

Latania K. LoganComments to Author , John P. Renschler, Sumanth Gandra, Robert A. Weinstein, Ramanan Laxminarayan, and for the Centers for Disease Control and Prevention Epicenters Program
Author affiliations: Rush University Medical Center, Chicago, Illinois, USA (L.K. Logan, R.A. Weinstein); John H. Stroger, Jr. Hospital of Cook County, Chicago (L.K. Logan, R.A. Weinstein); Center for Disease Dynamics, Economics and Policy, Washington, DC, USA (J.P. Renschler, S. Gandra, R. Laxminarayan); Public Health Foundation of India, New Delhi, India (R. Laxminarayan); Princeton University, Princeton, New Jersey, USA (R. Laxminarayan)

Main Article

Table 3

Co-resistance of 266 carbapenem-resistant Enterobacteriaceae isolates, The Surveillance Network–USA Database 1999–2012*

Drug class or drug No. nonsusceptible/no. tested (%)
Aminoglycosides 139/266 (52.26)
Gentamicin 108/265 (40.75)
Tobramycin 116/235 (49.36)
Amikacin 49/230 (21.30)
β-lactam/β-lactamase inhibitors 236/249 (94.78)
Ampicillin/sulbactam† 188/194 (96.91)
Piperacillin/tazobactam 201/231 (87.01)
Cefepime 125/241 (51.87)
Ciprofloxacin 122/253 (48.22)
Trimethoprim/sulfamethoxazole 142/263 (53.99)
Multidrug resistant‡ 127/263 (48.29)

*Rows showing drug classes (aminoglycosides, β-lactam/β-lactamase inhibitors) indicate number of isolates that were tested against >1 drug listed in the class and the number of isolates that were nonsusceptible to >1 drug listed in the class. Tigecycline susceptibility test results were not recorded in the database. Polymyxin B and colistin susceptibility test results were recorded in the database, but none of the carbapenem-resistant Enterobacteriaceae (CRE) isolates were tested against those drugs. Only 1 CRE-positive isolate was tested against fosfomycin. CRE is defined as resistance to all tested third-generation cephalosporins (ceftriaxone, cefotaxime, or ceftazidime), and nonsusceptiblity to >1 carbapenem (ertapenem, imipenem, meropenem, or doripenem). For bacteria with intrinsic imipenem nonsusceptibility (P. mirabilis), the CRE criteria required nonsusceptibility to >2 of the carbapenems listed.
Citrobacter (n = 8) and Enterobacter (n = 98) species are intrinsically resistant (22) to ampicillin/sulbactam. However, they have been included in the table.
‡These CRE isolates were nonsusceptible to >1 drug from each of the following 3 drug classes: aminoglycosides (gentamicin, tobramycin, amikacin), β-lactams (ampicillin/sulbactam, piperacillin/tazobactam), fluoroquinolones (ciprofloxacin), and trimethoprim/sulfamethoxazole.

Main Article

References
  1. Bush  K, Fisher  JF. Epidemiological expansion, structural studies, and clinical challenges of new β-lactamases from gram-negative bacteria. Annu Rev Microbiol. 2011;65:45578 . DOIPubMedGoogle Scholar
  2. Bush  K, Jacoby  GA. Updated functional classification of β-lactamases. Antimicrob Agents Chemother. 2010;54:96976. DOIPubMedGoogle Scholar
  3. Doi  Y, Park  YS, Rivera  JI, Adams-Haduch  JM, Hingwe  A, Sordillo  EM, Community-associated extended-spectrum β-lactamase–producing Escherichia coli infection in the United States. Clin Infect Dis. 2013;56:6418. DOIPubMedGoogle Scholar
  4. Lukac  PJ, Bonomo  RA, Logan  LK. Extended-spectrum β-lactamase-producing Enterobacteriaceae in children: old foe, emerging rhreat. Clin Infect Dis. 2015;60:138997 .PubMedGoogle Scholar
  5. Pitout  JD, Laupland  KB. Extended-spectrum β-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis. 2008;8:15966. DOIPubMedGoogle Scholar
  6. Munoz‐Price  LS, Quinn  JP. The spread of Klebsiella pneumoniae carbapenemases: a tale of strains, plasmids, and transposons. Clin Infect Dis. 2009;49:173941. DOIPubMedGoogle Scholar
  7. Kumarasamy  KK, Toleman  MA, Walsh  TR, Bagaria  J, Butt  F, Balakrishnan  R, Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis. 2010;10:597602. DOIPubMedGoogle Scholar
  8. Mathers  AJ, Hazen  KC, Carroll  J, Yeh  AJ, Cox  HL, Bonomo  RA, First clinical cases of OXA-48–producing carbapenem-resistant Klebsiella pneumoniae in the United States: the “menace” arrives in the new world. J Clin Microbiol. 2013;51:6803. DOIPubMedGoogle Scholar
  9. Logan  LK. Carbapenem-resistant Enterobacteriaceae: an emerging problem in children. Clin Infect Dis. 2012;55:8529. DOIPubMedGoogle Scholar
  10. Centers for Disease Control and Prevention (CDC). Vital signs: carbapenem-resistant Enterobacteriaceae. Report no. 62, Mar 2013 [cited 2014 Aug 21]. http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6209a3.htm
  11. Centers for Disease Control and Prevention (CDC). Antibiotic resistance threats in the United States, Sep 2013 [cited 2014 Aug 21]. http://www.cdc.gov/drugresistance/threat-report-2013/pdf/ar-threats-2013-508.pdf
  12. Castanheira  M, Farrell  SE, Deshpande  LM, Mendes  RE, Jones  RN. Prevalence of β-lactamase-encoding genes among Enterobacteriaceae bacteremia isolates collected in 26 U.S. hospitals: report from the SENTRY Antimicrobial Surveillance Program (2010). Antimicrob Agents Chemother. 2013;57:301220. DOIPubMedGoogle Scholar
  13. Lin  MY, Lyles-Banks  RD, Lolans  K, Hines  DW, Spear  JB, Petrak  R, The importance of long-term acute care hospitals in the regional epidemiology of Klebsiella pneumoniae carbapenemase-producing Enterobacteriaceae. Clin Infect Dis. 2013;57:124652 . DOIPubMedGoogle Scholar
  14. Braykov  NP, Eber  M, Klein  E, Morgan  D, Laxminarayan  RM. Trends in resistance to carbapenems and third-generation cephalosporins among clinical isolates of Klebsiella pneumoniae in the United States, 1999–2010. Infect Control Hosp Epidemiol. 2013;34:25968. DOIPubMedGoogle Scholar
  15. Little  ML, Qin  X, Zerr  DM, Weissman  SJ. Molecular diversity in mechanisms of carbapenem resistance in paediatric Enterobacteriaceae. Int J Antimicrob Agents. 2012;39:527. DOIPubMedGoogle Scholar
  16. Viau  RA, Hujer  AM, Marshall  SH, Perez  F, Hujer  KM, Briceno  DF, “Silent” dissemination of Klebsiella pneumoniae isolates bearing K. pneumoniae carbapenemase in a long-term care facility for children and young adults in northeast Ohio. Clin Infect Dis. 2012;54:131421. DOIPubMedGoogle Scholar
  17. Hoffmann  MS, Eber  MR, Laxminarayan  R. Increasing resistance of Acinetobacter species to imipenem in United States Hospitals, 1999. Infect Control Hosp Epidemiol. 2010;31:1967. DOIPubMedGoogle Scholar
  18. Klein  E, Smith  DL, Laxminarayan  R. Community-associated methicillin-resistant Staphylococcus aureus in outpatients, United States, 1999–2006. Emerg Infect Dis. 2009;15:192530 . DOIPubMedGoogle Scholar
  19. Logan  LK, Braykov  NP, Weinstein  RA, Laxminarayan  R. Extended-spectrum β-lactamase–producing and third-generation cephalosporin-resistant Enterobacteriaceae in children: trends in the United States, 1999–2011. Journal of the Pediatric Infectious Diseases Society. 2014;3:3208. DOIGoogle Scholar
  20. Centers for Disease Control and Prevention. CDC 2012 CRE toolkit: guidance for control of carbapenem-resistant Enterobacteriaceae (CRE) [cited 2014 Jun 25]. http://www.cdc.gov/hai/organisms/cre/cre-toolkit/background.html
  21. R Development Core Team. R: a language and environment for statistical computing, 2013. Vienna: R Foundation for Statistical Computing [cited 2015 Jun 23]. http://www.R-project.org
  22. Magiorakos  A-P, Srinivasan  A, Carey  RB, Carmeli  Y, Falagas  ME, Giske  CG, Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance: international standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18:26881. DOIPubMedGoogle Scholar
  23. Falagas  ME, Karageorgopoulos  DE, Nordmann  P. Therapeutic options for infections with Enterobacteriaceae producing carbapenem-hydrolyzing enzymes. Future Microbiol. 2011;6:65366. DOIPubMedGoogle Scholar
  24. Gupta  N, Limbago  BM, Patel  JB, Kallen  AJ. Carbapenem-resistant Enterobacteriaceae: epidemiology and prevention. Clin Infect Dis. 2011;53:607. DOIPubMedGoogle Scholar
  25. Gasink  LB, Edelstein  PH, Lautenbach  E, Synnestvedt  M, Fishman  NO. Risk factors and clinical impact of Klebsiella pneumoniae carbapenemase–producing K. pneumoniae. Infect Control Hosp Epidemiol. 2009;30:11805. DOIPubMedGoogle Scholar
  26. Patel  G, Huprikar  S, Factor  SH, Jenkins  SG, Calfee  DP. Outcomes of carbapenem‐resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies. Infect Control Hosp Epidemiol. 2008;29:1099106. DOIPubMedGoogle Scholar
  27. Tuon  FF, Rocha  JL, Toledo  P, Arend  LN, Dias  CH, Leite  TM, Risk factors for KPC-producing Klebsiella pneumoniae bacteremia. Braz J Infect Dis. 2012;16:4169. DOIPubMedGoogle Scholar
  28. Mouloudi  E, Protonotariou  E, Zagorianou  A, Iosifidis  E, Karapanagiotou  A, Giasnetsova  T, Bloodstream infections caused by metallo–β‐lactamase/Klebsiella pneumoniae carbapenemase–producing K. pneumoniae among intensive care unit patients in Greece: risk factors for infection and impact of type of resistance on outcomes. Infect Control Hosp Epidemiol. 2010;31:12506 . DOIPubMedGoogle Scholar
  29. Hsu  AJ, Tamma  PD. Treatment of multidrug-resistant gram-negative infections in children. Clin Infect Dis. 2014;58:143948. DOIPubMedGoogle Scholar
  30. US Food and Drug Administration. Drug safety and availability. FDA drug safety communication: FDA warns of increased risk of death with IV antibacterial Tygacil (tigecycline) and approves new boxed warning [cited 2014 Sep 10]. http://www.fda.gov/drugs/drugsafety/ucm369580.htm
  31. Haertl  R, Bandlow  G. Epidemiological fingerprinting of Enterobacter cloacae by small-fragment restriction endonuclease analysis and pulsed-field gel electrophoresis of genomic restriction fragments. J Clin Microbiol. 1993;31:12833 .PubMedGoogle Scholar
  32. Stumpf  AN, Roggenkamp  A, Hoffmann  H. Specificity of enterobacterial repetitive intergenic consensus and repetitive extragenic palindromic polymerase chain reaction for the detection of clonality within the Enterobacter cloacae complex. Diagn Microbiol Infect Dis. 2005;53:916. DOIPubMedGoogle Scholar
  33. Miyoshi-Akiyama  T, Hayakawa  K, Ohmagari  N, Shimojima  M, Kirikae  T. Multilocus sequence typing (MLST) for characterization of Enterobacter cloacae. PLoS ONE. 2013;8:e66358 . DOIPubMedGoogle Scholar
  34. Viau  RA, Kiedrowski  L, Perez  F, Marchaim  D, Guerrero  D, Kaye  K, K-1676: outbreak analysis of Enterobacter cloacae: hsp60 compares favorably to rep-PCR. Presented at: Interscience Conference on Antimicrobial Agents and Chemotherapy; 2014 Sep 8; Washington, DC [cited 2015 Jun 23]. http://www.icaaconline.com/php/icaac2014abstracts/data/papers/2014/K-1676.htm
  35. Stillwell  T, Green  M, Barbadora  K, Ferrelli  JG, Roberts  TL, Weissman  SJ, Outbreak of KPC-3 producing carbapenem-resistant Klebsiella pneumoniae in a US pediatric hospital. Journal of the Pediatric Infectious Diseases Society. 2014;3:19.
  36. Giuffrè  M, Bonura  C, Geraci  DM, Saporito  L, Catalano  R, Di Noto  S, Successful control of an outbreak of colonization by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae sequence type 258 in a neonatal intensive care unit, Italy. J Hosp Infect. 2013;85:2336 . DOIPubMedGoogle Scholar
  37. Löhr  IH, Rettedal  S, Natas  OB, Naseer  U, Oymar  K, Sundsfjord  A. Long-term faecal carriage in infants and intra-household transmission of CTX-M-15-producing Klebsiella pneumoniae following a nosocomial outbreak. J Antimicrob Chemother. 2013;68:10438. DOIPubMedGoogle Scholar
  38. Zerr  DM, Qin  X, Oron  AP, Adler  AL, Wolter  DJ, Berry  JE, Pediatric infection and intestinal carriage due to extended-spectrum-cephalosporin-resistant Enterobacteriaceae. Antimicrob Agents Chemother. 2014;58:39974004. DOIPubMedGoogle Scholar

Main Article

Page created: October 29, 2015
Page updated: October 29, 2015
Page reviewed: October 29, 2015
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external