Volume 21, Number 8—August 2015
Dispatch
Genome of Emerging Norovirus GII.17, United States, 2014
Figure 1
![Relationship of major capsid protein (viral protein [VP] 1) of norovirus strain Hu/GII.17/Gaithersburg/2014/US with other GII.17 noroviruses. A) Phylogenetic tree of the Hu/GII.17/Gaithersburg/2014/US VP1 region showing comparison with those of GII.17 norovirus strains available in public genetic databases. Phylogenetic analyses were conducted by using MEGA version 6 (11), neighbor-joining as the algorithm for reconstruction, and Tamura-Nei as the model of substitution. Bootstrap (500 replicates](/eid/images/15-0652-F1.jpg)
Figure 1. Relationship of major capsid protein (viral protein [VP] 1) of norovirus strain Hu/GII.17/Gaithersburg/2014/US with other GII.17 noroviruses. A) Phylogenetic tree of the Hu/GII.17/Gaithersburg/2014/US VP1 region showing comparison with those of GII.17 norovirus strains available in public genetic databases. Phylogenetic analyses were conducted by using MEGA version 6 (11), neighbor-joining as the algorithm for reconstruction, and Tamura-Nei as the model of substitution. Bootstrap (500 replicates) analysis was used for the statistical support of the tree; values >70% are shown. The Hu/GII.17/Gaithersburg/2014/US strain is indicated by a black circle. For each strain, the GenBank accession number/name/year of detection/country is shown. Gray shading indicates GII.17 cluster C strains. Scale bar indicates nucleotide substitutions per site. B) Amino acid differences among the GII.17 strains.
References
- Patel MM, Widdowson MA, Glass RI, Akazawa K, Vinje J, Parashar UD. Systematic literature review of role of noroviruses in sporadic gastroenteritis. Emerg Infect Dis. 2008;14:1224–31 . DOIPubMedGoogle Scholar
- Green KY. Caliciviridae: The noroviruses. In: Knipe HP, Howley PM, editors. Fields virology. 6th ed. Philadelphia: Lippincott, Williams & Wilkins; 2013. p. 582–608.
- Parra GI, Green KY. Sequential gastroenteritis episodes caused by 2 norovirus genotypes. Emerg Infect Dis. 2014;20:1016–8. DOIPubMedGoogle Scholar
- Saito M, Goel-Apaza S, Espetia S, Velasquez D, Cabrera L, Loli S, Multiple norovirus infections in a birth cohort in a Peruvian periurban community. Clin Infect Dis. 2014;58:483–91. DOIPubMedGoogle Scholar
- Sakon N, Yamazaki K, Nakata K, Kanbayashi D, Yoda T, Mantani M, Impact of genotype-specific herd immunity on the circulatory dynamism of norovirus: a 10-year longitudinal study of viral acute gastroenteritis. J Infect Dis. 2015;211:879–88. DOIPubMedGoogle Scholar
- Kroneman A, Vega E, Vennema H, Vinje J, White PA, Hansman G, Proposal for a unified norovirus nomenclature and genotyping. Arch Virol. 2013;158:2059–68. DOIPubMedGoogle Scholar
- Bull RA, Hansman GS, Clancy LE, Tanaka MM, Rawlinson WD, White PA. Norovirus recombination in ORF1/ORF2 overlap. Emerg Infect Dis. 2005;11:1079–85. DOIPubMedGoogle Scholar
- Debbink K, Lindesmith LC, Donaldson EF, Baric RS. Norovirus immunity and the great escape. PLoS Pathog. 2012;8:e1002921. DOIPubMedGoogle Scholar
- Lu J, Sun L, Fang L, Yang F, Mo Y, Lao J, Gastroenteritis outbreaks caused by norovirus GII.17, Guangdong Province, China, 2014–2015. Emerg Infect Dis. 2015 [cited 2015 May 1]. . DOIGoogle Scholar
- Kroneman A, Vennema H, Deforche K. v d Avoort H, Penaranda S, Oberste MS, et al. An automated genotyping tool for enteroviruses and noroviruses. J Clin Virol. 2011;51:121–5.
- Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol. 2013;30:2725–9. DOIPubMedGoogle Scholar
- Zheng DP, Ando T, Fankhauser RL, Beard RS, Glass RI, Monroe SS. Norovirus classification and proposed strain nomenclature. Virology. 2006;346:312–23. DOIPubMedGoogle Scholar