Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 22, Number 4—April 2016
Research

Microevolution of Monophasic Salmonella Typhimurium during Epidemic, United Kingdom, 2005–2010

Liljana Petrovska, Alison E. Mather1, Manal AbuOun, Priscilla Branchu, Simon R. Harris, Thomas Connor, K.L. Hopkins, A. Underwood, Antonia A. Lettini, Andrew J. Page, Mary Bagnall, John Wain, Julian Parkhill, Gordon Dougan, Robert Davies, and Robert A. KingsleyComments to Author 
Author affiliations: Animal and Plant Health Agency, Addlestone, UK (L. Petrovska, M. AbuOun, M. Bagnall, R. Davies); The Wellcome Trust Sanger Institute, Cambridge, UK (A.E. Mather, S.R. Harris, T. Connor, A. Page, J. Parkhill, G. Dougan, R.A. Kingsley); Institute of Food Research, Norwich, UK (P. Branchu, R.A. Kingsley); Public Health England, London, UK (K.L. Hopkins, A. Underwood, J. Wain); Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (PD), Italy (A.A. Lettini)

Main Article

Figure 1

Phylogeny of Salmonella enterica serovar Typhimurium (Salmonella Typhimurium) and Salmonella 1,4,[5],12:i:- isolates from the United Kingdom and Italy, 2005–2010. Maximum-likelihood tree of 212 Salmonella Typhimurium and monophasic isolates was constructed by using 12,793 single-nucleotide polymorphisms (SNPs) outside of prophage elements, insertion sequence elements and sequence repeats identified by reference to the whole-genome sequence of Salmonella Typhimurium strain SL1344. The tree is roo

Figure 1. Phylogeny of Salmonella enterica serovar Typhimurium (Salmonella Typhimurium) and Salmonella 1,4,[5],12:i:- isolates from the United Kingdom and Italy, 2005–2010. Maximum-likelihood tree of 212 Salmonella Typhimurium and monophasic isolates was constructed by using 12,793 single-nucleotide polymorphisms (SNPs) outside of prophage elements, insertion sequence elements and sequence repeats identified by reference to the whole-genome sequence of Salmonella Typhimurium strain SL1344. The tree is rooted with Salmonella Enteritidis whole-genome sequence as an outgroup (note shown). The lineage containing the Salmonella 1,4,[5],12:i:- current UK epidemic group is conflated for simplicity (filled triangle). The designation of the isolates (left column) and phage type are shown (right column). *Monophasic isolates outside of the main epidemic clade. †Monophasic clade closely related to the monophasic clone CVM23701 from North America (9). DT, definitive (phage) type; ND, not determined. Scale bar indicates the approximate number of SNPs determined by genetic distance and the number of SNPs used to construct the tree.

Main Article

References
  1. Herikstad  H, Motarjemi  Y, Tauxe  RV. Salmonella surveillance: a global survey of public health serotyping.. Epidemiol Infect. 2002;129:1–8.
  2. Majowicz  SE, Musto  J, Scallan  E, Angulo  FJ, Kirk  M, O’Brien  SJ, et al. The global burden of nontyphoidal Salmonella gastroenteritis. Clin Infect Dis. 2010;50:8829. DOIPubMedGoogle Scholar
  3. Wales  A, Davies  RH. Environmental aspects of Salmonella. In: Barrow PA, Methner U, editors. Salmonella in domestic animals. 2nd ed. Wallingford (UK): CAB International; 2013. p. 399–425.
  4. Rabsch  W, Truepschuch  S, Windhorst  D, Gerlach  RG. Typing phages and prophages of Salmonella. In: Porwollik S, editor. Salmonella, from genome to function. Norfolk (UK): Caister Academic Press; 2011. p. 25–48.
  5. Rabsch  W, Tschape  H, Baumler  AJ. Non-typhoidal salmonellosis: emerging problems. Microbes Infect. 2001;3:23747. DOIPubMedGoogle Scholar
  6. Threlfall  EJ. Epidemic Salmonella typhimurium DT 104—a truly international multiresistant clone. J Antimicrob Chemother. 2000;46:710. DOIPubMedGoogle Scholar
  7. Threlfall  EJ, Frost  JA, Ward  LR, Rowe  B. Epidemic in cattle and humans of Salmonella typhimurium DT104 with chromosomally integrated multiple drug resistance. Vet Rec. 1994;134:577. DOIPubMedGoogle Scholar
  8. UK Government. Salmonella in livestock production in GB—2014 [cited 2015 Jan 15]. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/468403/pub-salm14-intro.pdf
  9. Soyer  Y, Switt  AM, Davis  MA, Maurer  J, McDonough  PL, Schoonmaker-Bopp  DJ, et al. Salmonella enterica serotype 4,5,12:i:-, an emerging Salmonella serotype that represents multiple distinct clones. J Clin Microbiol. 2009;47:354656. DOIPubMedGoogle Scholar
  10. Laorden  L, Herrera-Leon  S, Martinez  I, Sanchez  A, Kromidas  L, Bikandi  J, et al. Genetic evolution of the Spanish multidrug-resistant Salmonella enterica 4,5,12:i:- monophasic variant. J Clin Microbiol. 2010;48:45636. DOIPubMedGoogle Scholar
  11. Trüpschuch  S, Laverde Gomez  JA, Ediberidze  I, Flieger  A, Rabsch  W. Characterisation of multidrug-resistant Salmonella Typhimurium 4,[5],12:i:- DT193 strains carrying a novel genomic island adjacent to the thrW tRNA locus. Int J Med Microbiol. 2010;300:27988. DOIPubMedGoogle Scholar
  12. de la Torre  E, Zapata  D, Tello  M, Mejia  W, Frias  N, Garcia Pena  FJ, et al. Several Salmonella enterica subsp. enterica serotype 4,5,12:i:- phage types isolated from swine samples originate from serotype Typhimurium DT U302. J Clin Microbiol. 2003;41:2395400. DOIPubMedGoogle Scholar
  13. Mossong  J, Marques  P, Ragimbeau  C, Huberty-Krau  P, Losch  S, Meyer  G, et al. Outbreaks of monophasic Salmonella enterica serovar 4,[5],12:i:- in Luxembourg, 2006. Euro Surveill. 2007;12:719.PubMedGoogle Scholar
  14. Hauser  E, Tietze  E, Helmuth  R, Junker  E, Blank  K, Prager  R, et al. Pork contaminated with Salmonella enterica serovar 4,[5],12:i:-, an emerging health risk for humans. Appl Environ Microbiol. 2010;76:460110. DOIPubMedGoogle Scholar
  15. Barone  L, Dal  VA, Pellissier  N, Vigano  A, Romani  C, Pontello  M. Emergence of Salmonella Typhimurium monophasic serovar: determinants of antimicrobial resistance in porcine and human strains [in Italian]. Ann Ig. 2008;20:199209 .PubMedGoogle Scholar
  16. Department for Environment. Food & Rural Affairs. Salmonella in livestock production in Great Britain. London: The Department; 2013.
  17. Switt  AIM, Soyer  Y, Warnick  LD, Wiedmann  M. Emergence, distribution, and molecular and phenotypic characteristics of Salmonella enterica serotype 4,5,12:i:-. Foodborne Pathog Dis. 2009;6:40715. DOIPubMedGoogle Scholar
  18. Anderson  ES, Ward  LR, Saxe  MJ, de Sa  JD. Bacteriophage-typing designations of Salmonella typhimurium. J Hyg (Lond). 1977;78:297300. DOIPubMedGoogle Scholar
  19. British Society of Antimicrobial Chemotherapy. EUCAST disk diffusion method. 2010 [cited 2015 Jan 15]. http://bsac.org.uk/eucastbsac-disc-diffusion-method/
  20. European Food Safety Authority. Scientific opinion on monitoring and assessment of the public health risk of “Salmonella Typhimurium-like” strains. EFSA Journal. 2010;8:1826.
  21. Swofford  DL, Maddison  WP. Parsimony, character-state reconstructions, and evolutionary inferences. In: Mayden RL, editor. Systematics, historical ecology, and North American freshwater fishes. Stanford (CA): Stanford University Press; 1992. p. 187–223.
  22. Page  AJ, Cummins  CA, Hunt  M, Wong  VK, Reuter  S, Holden  MT, et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics. 2015;31:36913. DOIPubMedGoogle Scholar
  23. Wood  MW, Rosqvist  R, Mullan  PB, Edwards  MH, Galyov  EE. SopE, a secreted protein of Salmonella dublin, is translocated into the target eukaryotic cell via a sip-dependent mechanism and promotes bacterial entry. Mol Microbiol. 1996;22:32738. DOIPubMedGoogle Scholar
  24. Hardt  WD, Chen  LM, Schuebel  KE, Bustelo  XR, Galan  JE. S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell. 1998;93:81526. DOIPubMedGoogle Scholar
  25. Allison  GE, Angeles  D, Tran-Dinh  N, Verma  NK. Complete genomic sequence of SfV, a serotype-converting temperate bacteriophage of Shigella flexneri. J Bacteriol. 2002;184:197487. DOIPubMedGoogle Scholar
  26. Okoro  CK, Kingsley  RA, Connor  TR, Harris  SR, Parry  CM, Al-Mashhadani  MN, et al. Intracontinental spread of human invasive Salmonella Typhimurium pathovariants in sub-Saharan Africa. Nat Genet. 2012;44:121521. DOIPubMedGoogle Scholar
  27. Mather  AE, Reid  SW, Maskell  DJ, Parkhill  J, Fookes  MC, Harris  SR, et al. Distinguishable epidemics of multidrug-resistant Salmonella Typhimurium DT104 in different hosts. Science. 2013;341:15147. DOIPubMedGoogle Scholar
  28. Nicholson  FA, Chambers  BJ, Williams  JR, Unwin  RJ. Heavy metal contents of livestock feeds and animal manures in England and Wales. Bioresour Technol. 1999;70:2331. DOIGoogle Scholar
  29. Slade  RD, Kyriazakis  I, Carroll  SM, Reynolds  FH, Wellock  IJ, Broom  LJ, et al. Effect of rearing environment and dietary zinc oxide on the response of group-housed weaned pigs to enterotoxigenic Escherichia coli O149 challenge. Animal. 2011;5:11708 http://dx.doi:10.1017/S1751731111000188. DOIPubMedGoogle Scholar
  30. Medardus  JJ, Molla  BZ, Nicol  M, Morrow  WM, Rajala-Schultz  PJ, Kazwala  R, et al. In-feed use of heavy metal micronutrients in U.S. swine production systems and its role in persistence of multidrug-resistant salmonellae. Appl Environ Microbiol. 2014;80:231725. DOIPubMedGoogle Scholar
  31. Hughes  KT, Roth  JR. Directed formation of deletions and duplications using Mud(Ap, lac). Genetics. 1985;109:26382 .PubMedGoogle Scholar
  32. Hopkins  KL, Threlfall  EJ. Frequency and polymorphism of sopE in isolates of Salmonella enterica belonging to the ten most prevalent serotypes in England and Wales. J Med Microbiol. 2004;53:53943. DOIPubMedGoogle Scholar
  33. Friebel  A, Ilchmann  H, Aepfelbacher  M, Ehrbar  K, Machleidt  W, Hardt  WD. SopE and SopE2 from Salmonella typhimurium activate different sets of RhoGTPases of the host cell. J Biol Chem. 2001;276:3403540. DOIPubMedGoogle Scholar
  34. Lopez  CA, Winter  SE, Rivera-Chavez  F, Xavier  MN, Poon  V, Nuccio  SP, et al. Phage-mediated acquisition of a type III secreted effector protein boosts growth of Salmonella by nitrate respiration. MBio. 2012;3:pii:e00143-12. DOIGoogle Scholar

Main Article

1Current affiliation: University of Cambridge, Cambridge, UK.

Page created: December 01, 2016
Page updated: December 01, 2016
Page reviewed: December 01, 2016
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external