Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 22, Number 4—April 2016
Dispatch

Definitive Hosts of Versteria Tapeworms (Cestoda: Taeniidae) Causing Fatal Infection in North America

Laura M. Lee, Roberta S. Wallace, Victoria L. Clyde, Annette Gendron-Fitzpatrick, Samuel D. Sibley, Margot Stuchin, Michael Lauck, David H. O’Connor, Minoru Nakao, Antti Lavikainen, Eric P. Hoberg, and Tony L. GoldbergComments to Author 
Author affiliations: University of Wisconsin–Madison, Madison, Wisconsin, USA (L.M. Lee, A. Gendron-Fitzpatrick, S.D. Sibley, M. Lauck, D.H. O’Connor); Milwaukee County Zoo, Milwaukee, Wisconsin, USA (R.S. Wallace, V.L. Clyde, A. Gendron-Fitzpatrick); Colorado State University, Fort Collins, Colorado, USA (M. Stuchin); Wisconsin National Primate Research Center, Madison (M. Lauck, D.H. O’Connor, T.L. Goldberg); Asahikawa Medical University, Asahikawa, Hokkaido, Japan (M. Nakao); University of Helsinki, Helsinki, Finland (A. Lavikainen); United States National Parasite Collection, Beltsville, Maryland, USA (E.P. Hoberg)

Main Article

Figure 2

Phylogenetic tree of members of the genus Versteria (Cestoda: Taeniidae). The tree was constructed from a DNA sequence alignment of cytochrome c oxidase subunit 1 genes. The maximum-likelihood method was used, with the likeliest model of molecular evolution (Hasegawa-Kishino-Yano model with invariable positions), which was chosen by using MEGA6 (6). Numbers next to branches indicate bootstrap values (%), estimated from 1,000 resamplings of the data, and the tree is rooted at the midpoint of the

Figure 2. Phylogenetic tree of members of the genus Versteria (Cestoda: Taeniidae). The tree was constructed from a DNA sequence alignment of cytochrome c oxidase subunit 1 genes. The maximum-likelihood method was used, with the likeliest model of molecular evolution (Hasegawa-Kishino-Yano model with invariable positions), which was chosen by using MEGA6 (6). Numbers next to branches indicate bootstrap values (%), estimated from 1,000 resamplings of the data, and the tree is rooted at the midpoint of the longest branch. Taxon labels indicate parasite species, intermediate or definitive host, and geographic origin (GenBank accession nos. in parentheses). Bold indicates sequences from this study (from adult parasites and definitive hosts). Scale bar indicates nucleotide substitutions per site.

Main Article

References
  1. Nakao  M, Lavikainen  A, Iwaki  T, Haukisalmi  V, Konyaev  S, Oku  Y, Molecular phylogeny of the genus Taenia (Cestoda: Taeniidae): proposals for the resurrection of Hydatigera Lamarck, 1816 and the creation of a new genus Versteria. Int J Parasitol. 2013;43:42737. DOIPubMedGoogle Scholar
  2. Goldberg  TL, Gendron-Fitzpatrick  A, Deering  KM, Wallace  RS, Clyde  VL, Lauck  M, Fatal metacestode infection in Bornean orangutan caused by unknown Versteria species. Emerg Infect Dis. 2014;20:10913. DOIPubMedGoogle Scholar
  3. Loos-Frank  B. An up-date of Verster’s (1969) ‘Taxonomic revision of the genus Taenia Linnaeus’ (Cestoda) in table format. Syst Parasitol. 2000;45:15584. DOIPubMedGoogle Scholar
  4. Baer  JG, Fain  A. Newly discovered Cestoda in Belgian Congo [in French]. Acta Trop. 1951;8:5963 .PubMedGoogle Scholar
  5. Pritchard  MH, Kruse  GOW. The collection and preservation of animal parasites. Lincoln (Nebraska): University of Nebraska Press; 1982.
  6. Tamura  K, Stecher  G, Peterson  D, Filipski  A, Kumar  S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol. 2013;30:27259. DOIPubMedGoogle Scholar
  7. Smith  MF, Patton  JL. The diversification of South American murid rodents: evidence from mitochondrial DNA sequence data for the akodontine tribe. Biol J Linn Soc Lond. 1993;50:14977. DOIGoogle Scholar
  8. Fleming  MA, Cook  JA. Phylogeography of endemic ermine (Mustela erminea) in southeast Alaska. Mol Ecol. 2002;11:795807. DOIPubMedGoogle Scholar
  9. Dawson  NG, Hope  AG, Talbot  SL, Cook  JA. A multilocus evaluation of ermine (Mustela erminea) across the Holarctic, testing hypotheses of Pleistocene diversification in response to climate change. J Biogeogr. 2014;41:46475. DOIGoogle Scholar
  10. Zhao  F, Ma  JY, Cai  HX, Su  JP, Hou  ZB, Zhang  TZ, Molecular identification of Taenia mustelae cysts in subterranean rodent plateau zokors (Eospalax baileyi). Dongwuxue Yanjiu. 2014;35:313–8.
  11. Hoberg  EP, Galbreath  KE, Cook  JA, Kutz  SJ, Polley  L. Northern host–parasite assemblages: history and biogeography on the borderlands of episodic climate and environmental transition. Adv Parasitol. 2012;79:197. DOIPubMedGoogle Scholar
  12. Whitfield  PJ, Evans  NA. Parthenogenesis and asexual multiplication among parasitic platyhelminths. Parasitology. 1983;86:12160. DOIPubMedGoogle Scholar
  13. Hoberg  EP, Ebinger  W, Render  JA. Fatal cysticercosis by Taenia crassiceps (Cyclophyllidea: Taeniidae) in a presumed immunocompromised canine host. J Parasitol. 1999;85:11748. DOIPubMedGoogle Scholar

Main Article

Medline reports the last page should be "183" not "84" in reference 3 "Loos-Frank, 2000".

Medline indexes "Biol J Linn Soc Lond" but cannot find a listing for reference 7 "Smith, Patton, 1993". Please check the reference for accuracy.

Medline indexes "J Biogeogr" but cannot find a listing for reference 9 "Dawson, Hope, Talbot, Cook, 2014". Please check the reference for accuracy.

Page created: March 16, 2016
Page updated: March 16, 2016
Page reviewed: March 16, 2016
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external