Volume 22, Number 5—May 2016
Dispatch
Molecular Characterization of Canine Rabies Virus, Mali, 2006–2013
Table 1
Virus | GenBank accession no. | Sample ID no. | Region | Quantitative RT-PCR Ct | Subgroup of Africa 2 lineage |
---|---|---|---|---|---|
RV01 | KP976113 | 420/2006 | Bamako | 28.51 | G |
RV04 | KP976114 | 345/2007 | Bamako | 30.19 | H |
RV05 | KP976130 | 352/2007 | Bamako | 25.35 | G |
RV06 | KP976125 | 58/2008 | Bamako | 24.09 | G |
RV09 | KP976126 | 146/2008 | Bamako | 27.51 | G |
RV10 | KP976122 | 154/2008 | Ségou | 25.75 | G |
RV11 | KP976124 | 167/2008 | Koulikoro | 23.97 | G |
RV14 | NA | 259/2008 | Bamako | 31.59 | H |
RV15 | KP976123 | 261/2008 | Ségou | 26.14 | G |
RV19 | NA | 530/2008 | Bamako | 27.85 | G |
RV20 | KP976117 | 003/2009 | Bamako | 32.82 | H |
RV22 | NA | 69/2009 | Bamako | 26.15 | H |
RV27 | NA | 118/2009 | Bamako | 32.30 | H |
RV44 | KP976129 | 587/2009 | Bamako | 26.22 | G |
RV50 | NA | 19/11/2010 | Bamako | 27.90 | G |
RV51 | NA | 42/2010 | Bamako | 28.59 | G |
RV56 | NA | 171/2010 | Koulikoro | 22.20 | G |
RV57 | KP976121 | 176/2010 | Gao | 21.90 | F |
RV60 | NA | 221/2010 | Bamako | 24.60 | H |
RV67 | NA | 603/2010 | Bamako | 21.30 | H |
RV68 | NA | 137/2011 | Bamako | 20.80 | H |
RV70 | KP976119 | 149/2011 | Bamako | 21.70 | H |
RV79 | NA | 339/2011 | Bamako | 24.90 | G |
RV81 | KP976127 | 357/2011 | Bamako | 34,20 | G |
RV84 | NA | 480/2011 | Bamako | 21.20 | G |
RV87 | KP976116 | 612/2011 | Bamako | 22.50 | H |
RV88 | KP976120 | 628/2011 | Koulikoro | 21.70 | H |
RV89 | NA | 674/2011 | Bamako | 20.20 | H |
RV90 | KP976118 | 688/2011 | Bamako | 30.80 | H |
RV93 | KP976115 | 223/2012 | Bamako | 23.20 | H |
RV95 | NA | 366/2012 | Bamako | 21.00 | G |
RV96 |
KP976128 |
100/2013 |
Bamako |
29.00 |
G |
*A fluorescent antibody test was conducted as described by Dean et al. (5). For each tested sample, test paper was impregnated with 100 μL of 10% brain suspension and subjected to molecular biological analysis. Of 100 samples tested, 32 showed positive results by this test. A conventional hemi-nested reverse transcription PCR (RT-PCR) was performed with rabies virus primers JW12–JW6 as described (9). All samples showed positive results by this test. A quantitative RT-PCR was performed with rabies primers JW12–N165-146 (10). This PCR detected >100 RNA copies/µL. The coefficient of determination (R2) was 0.999, the Y intercept was of 36.65, and efficiency was 99%. Samples in bold (n = 15) had duplicate sequences and were not subjected to phylogenetic analysis. ID, identification; Ct, cycle threshold; NA, not available. |
References
- World Health Organization. WHO expert consultation on rabies. Second report. World Health Organ Tech Rep Ser. 2013;982:1–139 .PubMedGoogle Scholar
- Cleaveland S, Fevre EM, Kaare M, Coleman PG. Estimating human rabies mortality in the United Republic of Tanzania from dog bite injuries. Bull World Health Organ. 2002;80:304–10 .PubMedGoogle Scholar
- Dao S, Abdillahi AM, Bougoudogo F, Toure K, Simbe C. Epidemiological aspects of human and animal rabies in the urban area of Bamako, Mali [in French]. Bull Soc Pathol Exot. 2006;99:183–6 .PubMedGoogle Scholar
- Mauti S, Traore A, Hattendorf J, Schelling E, Wasniewski M, Schereffer JL, Factors associated with dog rabies immunisation status in Bamako, Mali. Acta Trop. 2015;12:pii:S0001-706X(15)30139-X.
- Dean DJ, Abelseth MK, Atanasiu P. The fluorescent antibody test. In: Meslin FX, Kaplan MM, Koprowski H, editors. Laboratory techniques in rabies. 4th ed. Geneva: World Health Organization; 1996. p. 88–95.
- Kayali U, Mindekem R, Yemadji N, Oussiguere A, Naissengar S, Ndoutamia AG, Incidence of canine rabies in N’Djamena, Chad. Prev Vet Med. 2003;61:227–33. DOIPubMedGoogle Scholar
- Talbi C, Holmes EC, de Benedictis P, Faye O, Nakoune E, Gamatie D, Evolutionary history and dynamics of dog rabies virus in western and central Africa. J Gen Virol. 2009;90:783–91. DOIPubMedGoogle Scholar
- De Benedictis P, Sow A, Fusaro A, Veggiato C, Talbi C, Kaboré A, Phylogenetic analysis of rabies viruses from Burkina Faso, 2007. Zoonoses Public Health. 2010;57:e42–6. DOIPubMedGoogle Scholar
- Picard-Meyer E, Bruyere V, Barrat J, Tissot E, Barrat MJ, Cliquet F. Development of a hemi-nested RT-PCR method for the specific determination of European bat Lyssavirus 1. Comparison with other rabies diagnostic methods. Vaccine. 2004;22:1921–9. DOIPubMedGoogle Scholar
- Picard-Meyer E, Peytavin de Garam C, Schereffer JL, Marchal C, Robardet E, Cliquet F. Cross-platform evaluation of commercial real-time SYBR green RT-PCR kits for sensitive and rapid detection of European bat lyssavirus type 1. Biomed Res Int. 2015;2015:839518. .DOIPubMedGoogle Scholar
- Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol. 2013;30:2725–9. DOIPubMedGoogle Scholar
- Clement M, Posada D, Crandall KA. TCS: a computer program to estimate gene genealogies. Mol Ecol. 2000;9:1657–9. DOIPubMedGoogle Scholar
- Fèvre EM, Bronsvoort BM, Hamilton KA, Cleaveland S. Animal movements and the spread of infectious diseases. Trends Microbiol. 2006;14:125–31. DOIPubMedGoogle Scholar
- Talbi C, Lemey P, Suchard MA, Abdelatif E, Elharrak M, Jalal N, Phylodynamics and human-mediated dispersal of a zoonotic virus. PLoS Pathog. 2010;6:e1001166 . DOIPubMedGoogle Scholar
Page created: April 13, 2016
Page updated: April 13, 2016
Page reviewed: April 13, 2016
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.