Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 29, Number 5—May 2023
Online Report

US National Institutes of Health Prioritization of SARS-CoV-2 Variants

Sam Turner, Arghavan Alisoltani, Debbie Bratt, Liel Cohen-Lavi, Bethany L. Dearlove, Christian Drosten, Will M. Fischer, Ron A.M. Fouchier, Ana Silvia Gonzalez-Reiche, Lukasz Jaroszewski, Zain Khalil, Eric LeGresley, Marc Johnson, Terry C. Jones, Barbara Mühlemann, David O’Connor, Mayya Sedova, Maulik Shukla, James Theiler, Zachary S. Wallace, Hyejin Yoon, Yun Zhang, Harm van Bakel, Marciela M. Degrace, Elodie Ghedin, Adam Godzik, Tomer Hertz, Bette Korber, Jacob Lemieux, Anna M. Niewiadomska, Diane J. Post, Morgane Rolland, Richard Scheuermann, and Derek J. SmithComments to Author 
Author affiliations: University of Cambridge, Cambridge, UK (S. Turner, E. LeGresley, T.C. Jones, B. Mühlemann, D.J. Smith); University of California Riverside School of Medicine, Riverside, California, USA (A. Alisoltani, L. Jaroszewski, M. Sedova, A. Godzik); National Institutes of Health, Rockville, Maryland, USA (D. Bratt, M.M. Degrace, E. Ghedin, D.J. Post); Ben-Gurion University of the Negev, Be’er-Sheva, Israel. (L. Cohen-Lavi, T. Hertz); Walter Reed Army Institute of Research, Silver Spring, Maryland, USA (B.L. Dearlove, M. Rolland); Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA (B.L. Dearlove, M. Rolland); Charité–Universitätsmedizin and German Center for Infection Research, Berlin, Germany (C. Drosten, T.C. Jones, B. Mühlemann); Los Alamos National Laboratory, Los Alamos, New Mexico, USA (W.M. Fischer, J. Theiler, H. Yoon, B. Korber); Erasmus Medical Center, Rotterdam, the Netherlands (R.A.M. Fouchier); Icahn School of Medicine at Mount Sinai, New York, New York, USA (A.S. Gonzalez-Reiche, A.Z. Khalil, H. van Bakel); University of Missouri, Columbia, Missouri, USA (M. Johnson); University of Wisconsin–Madison, Madison, Wisconsin, USA (D. O’Connor); Argonne National Laboratory, Lemont, Illinois, USA (M. Shukla); University of Chicago, Chicago, Illinois, USA (M. Shukla); J. Craig Venter Institute, La Jolla, California, USA (Z.S. Wallace, Y. Zhang, A.M. Niewiadomska, R. Scheuermann); University of California, San Diego, California, USA (Z.S. Wallace, R. Scheuermann); Broad Institute of MIT and Harvard, Boston, Massachusetts, USA (J. Lemieux); La Jolla Institute for Immunology, La Jolla (R. Scheuermann); Global Virus Network, Baltimore, Maryland, USA (R. Scheuermann)

Main Article

Table 1

Generating consensus rankings for US National Institutes of Health prioritization of SARS-CoV-2 variants

Lineage data Description
Lineage name
A Pango lineage designation, potentially with specific additional mutations (e.g., BA.5 + R346T).
Substitutions
Substitutions in spike relative to the Wuhan-1 reference genome. Lineages are defined by using the spike sequence because spike mutations are likely to be most relevant for the phenotypic properties the consortium is interested in, such as antibody escape.
GISAID/GenBank accession no.
Example GISAID or GenBank ID that matches the nominated lineage. This provides an example of an intact gene for experimental groups, and acts as a bioinformatic check that the sequence exists.
No. sequences
The number of sequences in GISAID (5) matching the lineage.
Epidemiologic information
The number of sequences in each of the countries in which the lineage is most frequently detected.
Reason Additional information, including structural insights or further epidemiologic information.

Main Article

References
  1. World Health Organization. Tracking SARS-CoV-2 variants [cited 2022 Jan 19]. https://www.who.int/en/activities/tracking-SARS-CoV-2-variants
  2. European Centre for Disease Prevention and Control. SARS-CoV-2 variants of concern as of 06 January 2022 [cited 2021 Jan 6]. https://www.ecdc.europa.eu/en/covid-19/variants-concern
  3. Public Health England. SARS-CoV-2 variants of concern and variants under investigation in England: Technical briefing 1 [cited 2022 Oct 26]. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/959438/Technical_Briefing_VOC_SH_NJL2_SH2.pdf
  4. Rambaut  A, Holmes  EC, O’Toole  Á, Hill  V, McCrone  JT, Ruis  C, et al. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat Microbiol. 2020;5:14037. DOIPubMedGoogle Scholar
  5. Shu  Y, McCauley  J. GISAID: Global initiative on sharing all influenza data - from vision to reality. Euro Surveill. 2017;22:30494. DOIPubMedGoogle Scholar
  6. National Institutes of Health. NIH SAVE Early Detection Prioritization Summary [2023 Feb 10]. https://docs.google.com/spreadsheets/d/167uJP9LfJN07410sWaMSKU1Se-4XX687j8IgVX4MV_w/edit#gid=1166031460
  7. Korber  B, Fischer  WM, Gnanakaran  S, Yoon  H, Theiler  J, Abfalterer  W, et al.; Sheffield COVID-19 Genomics Group. Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell. 2020;182:812827.e19. DOIPubMedGoogle Scholar
  8. Fischer  W, Giorgi  EE, Chakraborty  S, Nguyen  K, Bhattacharya  T, Theiler  J, et al.; Network for Genomic Surveillance in South Africa (NGS-SA). HIV-1 and SARS-CoV-2: Patterns in the evolution of two pandemic pathogens. Cell Host Microbe. 2021;29:1093110. DOIPubMedGoogle Scholar
  9. Bacterial and Viral Bioinformatics Resource Center. SARS-CoV-2 real-time tracking and early warning system for variants and lineages of concern (VoCs/LoCs) [cited 2023 Feb 10]. https://www.bv-brc.org/view/VariantLineage/#view_tab=overview
  10. Wallace  ZS, Davis  J, Niewiadomska  AM, Olson  RD, Shukla  M, Stevens  R, et al. Early detection of emerging SARS-CoV-2 variants of interest for experimental evaluation. Front Bioinform. 2022;2:1020189. DOIPubMedGoogle Scholar
  11. Earnest  R, Uddin  R, Matluk  N, Renzette  N, Turbett  SE, Siddle  KJ, et al.; New England Variant Investigation Team. Comparative transmissibility of SARS-CoV-2 variants Delta and Alpha in New England, USA. Cell Rep Med. 2022;3:100583. DOIPubMedGoogle Scholar
  12. Obermeyer  F, Jankowiak  M, Barkas  N, Schaffner  SF, Pyle  JD, Yurkovetskiy  L, et al. Analysis of 6.4 million SARS-CoV-2 genomes identifies mutations associated with fitness. Science. 2022;376:132732. DOIPubMedGoogle Scholar
  13. US Military HIV Research Program. SARS-CoV-2 sequencing tracking [cited 2022 Oct 26]. https://www.hivresearch.org/SARS-CoV-2-sequence-tracking
  14. Schymkowitz  J, Borg  J, Stricher  F, Nys  R, Rousseau  F, Serrano  L. The FoldX web server: an online force field. Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W382–8.
  15. Gregory  DA, Trujillo  M, Rushford  C, Flury  A, Kannoly  S, San  KM, et al. Genetic diversity and evolutionary convergence of cryptic SARS- CoV-2 lineages detected via wastewater sequencing. PLoS Pathog. 2022;18:e1010636. DOIPubMedGoogle Scholar
  16. Smyth  DS, Trujillo  M, Gregory  DA, Cheung  K, Gao  A, Graham  M, et al. Tracking cryptic SARS-CoV-2 lineages detected in NYC wastewater. Nat Commun. 2022;13:635. DOIPubMedGoogle Scholar
  17. Cao  Y, Jian  F, Wang  J, Yu  Y, Song  W, Yisimayi  A, et al. Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution. Nature. 2023;614:5219.PubMedGoogle Scholar

Main Article

Page created: March 06, 2023
Page updated: April 20, 2023
Page reviewed: April 20, 2023
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external