Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

Volume 2, Number 3—July 1996

Volume 2, Number 3—July 1996   PDF Version [PDF - 6.15 MB - 89 pages]


  • Molecular Approaches to the Identification
of Unculturable Infectious Agents PDF Version [PDF - 335 KB - 9 pages]
    S. Gao and P. S. Moore
        View Abstract

    New molecular biologic techniques, particularly representational difference analysis, consensus sequence–based polymerase chain reaction, and complementary DNA library screening, have led to the identification of several previously unculturable infectious agents. New agents have been found in tissues from patients with Kaposi's sarcoma, non-A, non-B hepatitis, hantavirus pulmonary syndrome, bacillary angiomatosis, and Whipple's disease by using these techniques without direct culture. The new methods rely on identifying subgenomic fragments from the suspected agent. After a unique nucleic acid fragment belonging to an agent is isolated from diseased tissues, the fragment can be sequenced and used as a probe to identify additional infected tissues or obtain extended portions of the agent's genome. For agents that cannot be cultured by standard techniques, these approaches have proved invaluable for identification and characterization studies. Applying these techniques to other human diseases of suspected infectious etiology may rapidly elucidate novel candidate pathogens.

  • DNA Vaccines for Emerging Infectious Diseases: What If? PDF Version [PDF - 41 KB - 8 pages]
    R. G. Whalen
        View Abstract

    A novel and powerful method for vaccine research, colloquially known as DNA vaccines, involves the deliberate introduction into tissues of a DNA plasmid carrying an antigen-coding gene that transfects cells in vivo and results in an immune response. DNA vaccines have several distinct advantages, which include ease of manipulation, use of a generic technology, simplicity of manufacture, and chemical and biological stability. In addition, DNA vaccines are a great leveler among researchers around the world because they provide unprecedented ease of experimentation. To facilitate diffusion of information, an Internet site has been established called The DNA Vaccine Web (URL: In this review, a brief survey is undertaken of the experimental models and preclinical work on DNA vaccines to contribute to a greater awareness of the possibilities for emerging infectious diseases.


  • Conjugate Vaccines and the Carriage of Haemophilus influenzae Type b PDF Version [PDF - 37 KB - 7 pages]
    M. L. Barbour and D. Phil
        View Abstract

    Pharyngeal carriage of Haemophilus influenzae type b (Hib) is important in the transmission of Hib organisms, the pathogenesis of Hib disease, and the development of immunity to the bacterium. The remarkable success of current vaccination programs against Hib has been due in part to the effect of conjugate Hib vaccines in decreasing carriage of Hib. This review explores evidence for this effect, and discusses the possible mechanisms of the mucosal influence of Hib conjugate vaccines.

  • Application of Molecular Techniques
to the Diagnosis of Microsporidial Infection PDF Version [PDF - 1.09 MB - 9 pages]
    D. P. Fedorko and Y. M. Hijazi
        View Abstract

    Microsporidia are now recognized as important pathogens of AIDS patients; the ability of these parasites to cause disease in immunocompetent persons is still being elucidated. Improved diagnostic tests for microsporidial infection are continually being sought for establishing diagnosis in order to avoid laborious electron microscopy studies that require invasively acquired biopsy specimens. Modified trichrome or chemofluorescent stains are useful for detecting microsporidia in bodily fluids and stool specimens, but they do not allow for speciation of microsporidia. Polymerase chain reaction with specific primers will allow the detection and speciation of microsporidia in biopsy tissue, bodily fluids, and stool specimens.

  • Coccidioidomycosis: A Reemerging Infectious Disease PDF Version [PDF - 683 KB - 8 pages]
    T. N. Kirkland and J. Fierer
        View Abstract

    Coccidioides immitis, the primary pathogenic fungus that causes coccidioidomycosis, is most commonly found in the deserts of the southwestern United States and Central and South America. During the early 1990s, the incidence of coccidioidomycosis in California increased dramatically. Even though most infections are subclinical or self-limited, the outbreak is estimated to have cost more than $66 million in direct medical expenses and time lost from work in Kern County, California, alone. In addition to the financial loss, this pathogen causes serious and life-threatening disseminated infections, especially among the immunosuppressed, including AIDS patients. This article discusses factors that may be responsible for the increased incidence of coccidioidomycosis (e.g., climatic and demographic changes and the clinical problems of coccidioidomycosis in the immunocompromised) and new approaches to therapy and prevention.

  • Antibody-Based Therapies for Emerging Infectious Diseases PDF Version [PDF - 345 KB - 9 pages]
    A. Casadevall
        View Abstract

    In the 19th century, it was discovered that immune sera were useful in treating infectious diseases. Serum therapy was largely abandoned in the 1940s because of the toxicity associated with the administration of heterologous sera and the introduction of effective antimicrobial chemotherapy. Recent advances in the technology of monoclonal antibody production provide the means to generate human antibody reagents and reintroduce antibody therapies, while avoiding the toxicities associated with serum therapy. Because of the versatility of antibodies, antibody-based therapies could, in theory, be developed against any existing pathogen. The advantages of antibody-based therapies include versatility, low toxicity, pathogen specificity, enhancement of immune function, and favorable pharmacokinetics; the disadvantages include high cost, limited usefulness against mixed infections, and the need for early and precise microbiologic diagnosis. The potential of antibodies as anti-infective agents has not been fully tapped. Antibody-based therapies constitute a potentially useful option against newly emergent pathogens.



About the Cover

News and Notes