Skip directly to local search Skip directly to A to Z list Skip directly to navigation Skip directly to site content Skip directly to page options
CDC Home

Volume 18, Number 2—February 2012

Dispatch

Phylogeography of Francisella tularensis subsp. holarctica, Europe

Miklós Gyuranecz1, Dawn N. Birdsell1, Wolf Splettstoesser, Erik Seibold, Stephen M. Beckstrom-Sternberg, László Makrai, László Fodor, Massimo Fabbi, Nadia Vicari, Anders Johansson, Joseph D. Busch, Amy J. Vogler, Paul Keim, and David M. WagnerComments to Author 
Author affiliations: Hungarian Academy of Sciences, Budapest, Hungary (M. Gyuranecz); Northern Arizona University, Flagstaff, Arizona, USA (D.N. Birdsell, J.D. Busch, A.J. Vogler, P. Keim, D.M. Wagner); Bundeswehr Institute of Microbiology, Munich, Germany (W. Splettstoesser, E. Seibold); Translational Genomics Research Institute, Phoenix, Arizona, USA (S.M. Beckstrom-Sternberg, P. Keim); Szent István University, Budapest (L. Makrai, L. Fodor); Istituto Zooprofilattico Sperimentale della Lombradia e dell’Emilia Romagna, Pavia, Italy (M. Fabbi, N. Vicari); Umeå University, Umeå, Sweden (A. Johansson)

Main Article

Figure 1

Existing phylogeny of Francisella tularensis subsp. holarctica. A) Single nucleotide polymorphism (SNP)–based phylogeny of F. tularensis subsp. holarctica derived from previous studies (5,6,8). Terminal subgroups representing sequenced strains are shown as stars, and intervening nodes representing collapsed branches are indicated by circles. Subclades within group B.13 are depicted in red. Isolates from Austria, Germany, Hungary, Italy, and Romania (n = 45) were assigned to existing subclades (b

Figure 1. Existing phylogeny of Francisella tularensis subsp. holarctica. A) Single nucleotide polymorphism (SNP)–based phylogeny of F. tularensis subsp. holarctica derived from previous studies (5,6,8). Terminal subgroups representing sequenced strains are shown as stars, and intervening nodes representing collapsed branches are indicated by circles. Subclades within group B.13 are depicted in red. Isolates from Austria, Germany, Hungary, Italy, and Romania (n = 45) were assigned to existing subclades (black arrows) by using existing canonical SNP assays (5,8). B) Maximum parsimony phylogeny constructed by using SNPs discovered from 6 F. tularensis whole-genome sequences, including 5 strains from group B.13 and an outgroup strain, OSU18 (not shown). This phylogeny was rooted by using OSU18, and bootstrap values were based on 1,000 simulations by using a heuristic search. The newly sequenced Hungarian strain (Tul07/2007) is highlighted in gray.

Main Article

1These authors contributed equally to this article.

Top of Page

 

Past Issues

Select a Past Issue:

World Malaria Day - April 25, 2014 - Invest in the future, defeat malaria

20th Anniversary - National Infant Immunization Week - Immunization. Power to Protect.

Art in Science - Selections from Emerging Infectious Diseases
Now available for order



CDC 24/7 – Saving Lives, Protecting People, Saving Money. Learn More About How CDC Works For You…

USA.gov: The U.S. Government's Official Web PortalDepartment of Health and Human Services
Centers for Disease Control and Prevention   1600 Clifton Rd. Atlanta, GA 30333, USA
800-CDC-INFO (800-232-4636) TTY: (888) 232-6348 - Contact CDC–INFO