Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 2, Number 4—October 1996
Synopsis

Molecular Mechanisms of Bacterial Virulence: Type III Secretion and Pathogenicity Islands

Joan Mecsas and Evelyn J. Strauss
Author affiliations: Stanford University School of Medicine, Stanford, California

Main Article

Table 2

Characteristics of several pathogenicity islands

Organism Name Location Borders Stable ? Foreign origin G+C: % island/ % chromosome Functions Size Ref.
Uropathogenic E. coli 536 Pathogenicity island I, Pai I selCa, 82' • 16 bp direct repeats, derived from selC
• shared motif with Pai II repeats no direct repeats
absent from normal fecal and laboratory strains of E. coli 
-hemolysin I 70 kb 3, 82, 84
Pai II leuXa, 97' • 18 bp direct repeats, derived from leuX
• shared motif with Pai I repeats no direct repeats
absent from normal fecal and laboratory strains of E. coli 
-hemolysin II
prf (fimbriae: adherence to host cells)
transcriptional activators of chromosomal genes 190 kb 3,4, 67, 82, 84
Uropathogenic E. coli J96 Pai I near pheVa, 64' absent from normal fecal and laboratory strains of E. coli 
-hemolysin I
pap (fimbriae: adherence to host cells)
IS element sequences
R plasmid sequences
P4 phage sequences >170 kb 96
Pai II pheRa, 94' 135 bp imperfect direct repeats no direct repeats
absent from normal fecal and laboratory strains of E. coli 
-hemolysin II
prs (fimbriae: adherence to host cells)
cytotoxic necrotizing factor type 1
IS element sequences
P4 phage sequences
OmpR homolog 106 kb 4, 96, 97
Entero-pathogenic E. coli (EPEC) Locus of enterocyte effacement, LEE selCa, 82' no repeats or IS elements found yesb G+C: 39%/51%
not present in closely related, non-AE-producing bacteria mediates formation of AE lesions
type III secretion system 35 kb 63, 83
Salmonella typhimurium Salmonella pathogenicity island 1, SPI 1 between fhl and mutS, 63' no repeats or IS elements found in S. typhimurium; IS3 on one border in certain Salmonella serotypes yesb,c G+C: 42%/52%
absent from E. coli invasion into cultured epithelial cells
type III secretion system 40 kb 28, 68
SPI 2 between ydhE and pykF, 31' yesb G+C: 45%/52%
absent from E. coli; conserved among Salmonella type III secretion system 40 kb 43
Salmonella induced filament gene A, sifA potB/ potC 14 bp direct repeats yes G+C: 41%/52%
direct repeats
absent in E. coli; conserved among Salmonella required for formation of structures associated with Salmonella-associated vacuoles within epithelial cells 1.6 kb 69d
Yersinia pestis Ability to adsorb exogenous pigments, Pgm phoE 2.2 kb direct repeats (=IS100) no G+C: hemin storage region 47%/46-50%; yersiniabactin receptor/ iron-regulated protein region 56-60%/46-50%
direct repeats hemin and congo red binding
pesticin sensitivity
iron acquisition
growth at 37 C in defined medium 102 kb 70, 71
Helicobacter pylori Cytotoxin-associated gene region, Cag glr • 31 bp direct repeats, derived from glutamate racemase gene
• IS605 on one end see text G+C: 35%/38-45%
IS elements
not present in type II strains induction of IL-8 secretion
homologues to membrane-associated proteins: environmental sensors, translocases, permeases, pilus and flagella assembly proteins
IS elements 40 kb e
Vibrio cholerae O139 otnA otnB rfb flanked by two different IS elements IS elements
not present in Vibrio cholerae O1 El Tor capsule and O antigen synthesis (by homology) 35 kb 93, 98
Listeria monocytogenes between prs and ldh No IS elements found yesb not present in several nonpathogenic species escape from vacuole
intra-/inter-cellular spread 9.6 kb 99

atRNA gene
bapparently
cunstable in certain serotypes
dadditional information received in personal communication with M. Stein
eCensini S, et al., 1996, submitted for publication

Main Article

References
  1. Finlay  BB, Falkow  S. Common themes in microbial pathogenicity. Microbiol Rev. 1989;53:21030.PubMedGoogle Scholar
  2. Hayes  W. The Genetics of Bacteria and their Virues. In: 2nd ed. 1968, New York: John Wiley & Sons Inc.
  3. Knapp  S, Hacker  J, Jarchau  T,Goebel  W. Large, unstable inserts in the chromosome affect virulence properties of uropathogenic Escherichia coli O6 strain 536. J Bacteriol. 1986;168:2230.PubMedGoogle Scholar
  4. Hacker  J, Bender  L, Ott  M, Wingender  J, Lund  B, Marre  R, Deletions of chromosomal regions coding for fimbriae and hemolysins occur in vitro and in vivo in various extraintestinal Escherichia coli isolates. Microb Pathog. 1990;8:221325. DOIGoogle Scholar
  5. Fenselau  S, Balbo  I, Bonus  U. Determinants of pathogenicity in Xanthomonas campestris pv. vesicatoria are related to proteins involved in secretion in bacteria pathogens of animals. Mol Plant Microbe Interact. 1992;5:3906.PubMedGoogle Scholar
  6. Sasakawa  C, Komatsu  K, Tobe  T, Fukuda  I, Suzuki  T, Yoshikawa  M. Eight genes in region 5 that form an operon are essential for invasion of epithelial cells by Shigella flexneri. J Bacteriol. 1993;175:233446.PubMedGoogle Scholar
  7. Groisman  EA, Ochman  H. Cognate gene clusters govern invasion of host epithelial cells by Salmonella typhimurium and Shigella flexneri. EMBO J. 1993;12:377987.PubMedGoogle Scholar
  8. van Gijsegem  F, Gough  C, Zischek  C, Niqueux  E, Arlat  M, Genin  S, . The hrp gene locus of Pseudomonas solanacearum, which controls the production of type III secretion system, encodes eight proteins related to components of bacterial flagellar biogenesis complex. Mol Microbiol. 1995;15:1095114. DOIPubMedGoogle Scholar
  9. Michiels  T, Vanooteghem  J-C, de Rouvroit  C, China  B, Gustin  A, Boudry  P, . Analysis of virC, an operon involved in secretion of Yop proteins by Yersinia enterocolitica. J Bacteriol. 1991;173:49945009.PubMedGoogle Scholar
  10. Plano  GV, Barve  SS, Straley  SC. LcrD, a membrane-bound regulator of the Yersinia pestis low-calcium response. J Bacteriol. 1991;173:7293303.PubMedGoogle Scholar
  11. Haddix  PL, Straley  SC. Structure and regulation of the c Yersinia pestis yscBCDEF operon. J Bacteriol. 1992;174:48208.PubMedGoogle Scholar
  12. Bergman  T, Erickson  K, Galyov  E, Persson  C, Wolf-Watz  H. The lcrB (yscN/U) gene cluster of Yersinia pseudotuberculosis is involved in Yop secretion and shows high homology to the spa gene clusters of Shigella flexeri and Salmonella typhimurium. J Bacteriol. 1994;176:261926.PubMedGoogle Scholar
  13. Michiels  T, Wattiau  P, Brasseur  R, Ruysschaert  J-M,Cornelis  GR. Secretion of Yop proteins by Yersiniae. Infect Immun. 1990;58:28409.PubMedGoogle Scholar
  14. Salmond  GPC, Reeves  PJ. Membrane traffic wardens and protein secretion in Gram-negative bacteria. Trends Biochem Sci. 1993;18:712. DOIPubMedGoogle Scholar
  15. Rosqvist  R, Forsberg  Å, Wolf-Watz  H. Intracellular targetting of the Yersinia YopE cytotoxin in mammalian cells induces actin microfilament disruption. Infect Immun. 1991;59:45629.PubMedGoogle Scholar
  16. Rosqvist  R, Forsberg  Å, Rimpiläinen  M, Bergman  T, Wolf-Watz  H. The cytotoxic protein YopE of Yersinia obstructs the primary host defense. Mol Microbiol. 1990;4:65767. DOIPubMedGoogle Scholar
  17. Ménard  R, Prévost  M-CGP, Sansonetti  P, Dehio  C. The secreted Ipa complex of Shigella flexneri promotes entry into mammalian cells. Proc Natl Acad Sci U S A. 1996;93:12548. DOIPubMedGoogle Scholar
  18. Ginocchio  CC, Olmsted  SB, Wells  CL, Galán  JE. Contact with epithelial cells induces the formation of surface appendages on Salmonella typhimurium. Cell. 1994;76:71724. DOIPubMedGoogle Scholar
  19. Watarai  M, Tobe  T, Yoshikawa  M, Sasakawa  C. Contact of Shigella with host cells triggers release of Ipa invasins and is an essential function of invasiveness. EMBO J. 1995;14:246170.PubMedGoogle Scholar
  20. Pugsley  AP. The complete general secretory pathway. Microbiol Rev. 1993;57:50108.PubMedGoogle Scholar
  21. Fath  MJ, Kolter  R. ABC transporters: bacterial exporters. Microbiol Rev. 1993;57:9971017.
  22. Stephens  C, Shapiro  L. Targetted protein secretion in bacterial pathogenesis. Curr Biol. 1996;6:92730. DOIPubMedGoogle Scholar
  23. Aizawa  S-I. Flagellar assembly in Salmonella typhimurium. Mol Microbiol. 1996;19:15. DOIPubMedGoogle Scholar
  24. Harshey  RM, Toguchi  A. Spinning tails: homologies among bacterial flagellar systems. Trends Microbiol. 1996;4:22631. DOIPubMedGoogle Scholar
  25. Kaniga  K, Bossio  JC, Galán  JE. The Salmonella typhimurium invasion genes invF and invG encode homologues of the AraC and PulD family of proteins. Mol Microbiol. 1994;13:55568. DOIPubMedGoogle Scholar
  26. Ménard  R, Sansonetti  PJ, Parsot  C. The secretion of the Shigella flexneri Ipa invasins is induced by the epithelial cell and controlled by IpaB and IpaD. EMBO J. 1994;13:5293302.PubMedGoogle Scholar
  27. Rosqvist  R, Magnusson  K, Wolf-Watz  H. Target cell contact triggers expression and polarized transfer of Yersinia YopE cytotoxin into mammalian cells. EMBO J. 1994;13:96472.PubMedGoogle Scholar
  28. Galán  JE. Molecular genetic bases of Salmonella entry into host cells. Mol Microbiol. 1996;20:26371. DOIPubMedGoogle Scholar
  29. Straley  SC, Perry  RD. Environmental modulation of the gene expression and pathogenesis in Yersinia. Trends Microbiol. 1995;3:3107. DOIPubMedGoogle Scholar
  30. Lee  C, Falkow  S. The ability of Salmonella to enter mammalian cells is affected by bacterial growth states. Proc Natl Acad Sci U S A. 1990;89:184751. DOIGoogle Scholar
  31. Hromockyj  AE, Tucker  SC, Maurelli  AT. Temperature regulation of Shigella virulence: identification of the repressor gene virR, an analogue of hns, and partial complementation by tyrosyl transfer RNA. Mol Microbiol. 1992;6:211324. DOIPubMedGoogle Scholar
  32. Pettersson  J, Nordfelth  R, Dubrinina  E, Bergaman  T, Gustfsson  M, Magnusson  KE, Modulation of the virulence factor expression by pathogen target cell contact. Science. 1996;273:12313. DOIPubMedGoogle Scholar
  33. Kenny  B, Lai  L-C, Finlay  BB, Donnenberg  MS. EspA, a protein secreted by enteropathogenic Escherichia coli, is required to induce signals in epithelial cells. Mol Microbiol. 1996;20:31323. DOIPubMedGoogle Scholar
  34. Salyers  AA, Whitt  DD. Bacterial Pathogenesis: A Molecular Approac, first ed. Washington D.C.: ASM Press, 1994.
  35. Cornelis  GR. Yersinia Pathogenicity Factors. In: Hormaeche CE, Penn CW, Smyth CJ, editors. Molecular Biology of Bacterial Infection: Current Status and Future Perspectives. Cambridge: Cambridge University Press, 1992.
  36. Persson  C, Nordfelth  R, Holmström  A, Håkansson  S, Rosqvist  R, Wolf-Watz  H. Cell-surface-bound Yersinia translocate the protein tyrosine phosphatase YopH by a polarized mechanism into the target cell. Mol Microbiol. 1995;18:13550. DOIPubMedGoogle Scholar
  37. Håkansson  S, Galyov  EE, Rosqvist  R, Wolf-Watz  H. The Yersinia YpkA Ser/Thr kinase is translocated and subsequently targeted to the inner surface of the HeLa cells plasma membrane. Mol Microbiol. 1996;20:593603. DOIPubMedGoogle Scholar
  38. Sory  M-P, Cornelis  GR. Translocation of a hybrid YopE-adenylate cyclase from Yersinia enterocolitica into HeLa cells. Mol Microbiol. 1994;14:58394. DOIPubMedGoogle Scholar
  39. Bliska  JB, Guan  K, Dixon  JE, Falkow  S. Tyrosine phosphatase hydrolysis of host proteins by an essential Yersinia virulence determinant. Proc Natl Acad Sci U S A. 1991;61:391421.
  40. Ménard  R, Dehio  C, Sansonetti  PJ. Bacterial entry into epithelial cells: the paradigm of Shigella. Trends Microbiol. 1996;4:2206. DOIPubMedGoogle Scholar
  41. Jones  B, Pascopella  L, Falkow  S. Entry of microbes into the host: using M cells to break the mucosal barrier. Curr Opin Immunol. 1995;7:4748. DOIPubMedGoogle Scholar
  42. Galán  JE, Curtiss  IR. Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proc Natl Acad Sci U S A. 1989;86:63867. DOIGoogle Scholar
  43. Shea  JE, Hensel  M, Gleeson  C, Holden  DW. Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proc Natl Acad Sci U S A. 1996;93:25937. DOIPubMedGoogle Scholar
  44. Hensel  M, Shea  JE, Gleeson  C, Jones  MD, Dalton  E, Holden  DW. Simultaneous identification of bacterial virulence genes by negative selection. Science. 1995;269:4003. DOIPubMedGoogle Scholar
  45. Rosqvist  R, Håkansson  S, Forsberg  Å, Wolf-Watz  H. Functional conservation of the secretion and translocation machinery for virulence proteins of Yersiniae, Salmonellae and Shigellae. EMBO J. 1995;14:418795.PubMedGoogle Scholar
  46. Hermant  D, Ménard  R, Arricau  N, Parsot  C, Popoff  MY. Functional conservation of the Salmonella and Shigella effectors of entry into epithelial cells. Mol Microbiol. 1995;17:7819. DOIPubMedGoogle Scholar
  47. Woestyn  S, Allaoui  A, Wattiau  P. YscN, the putative energizer of the Yersinia Yop secretion machinery. J Bacteriol. 1994;176:15619.PubMedGoogle Scholar
  48. Plano  GV, Straley  SC. Mutations in yscC, yscD, and yscG prevent high level expression and secretion of V antigen and Yops in Yersinia pestis. J Bacteriol. 1995;177:384354.PubMedGoogle Scholar
  49. Allaoui  A, Woestyn  S, Sluiters  C, Cornelis  GR. YscU, a Yersinia enterocolitica inner membrane protein involved in Yop secretion. J Bacteriol. 1994;176:453442.PubMedGoogle Scholar
  50. Fields  K, Plano  GV, Straley  SC. A low-Ca2+ response (LCR) secretion (ysc) locus lies within the lcrB region of the LCR plasmid in Yersinia pestis. J Bacteriol. 1994;176:56979.PubMedGoogle Scholar
  51. Allaoui  A, Schulte  R, Cornelis  GR. Mutational analysis of Yersinia enterocolitica virC operon: characterization of yscE,F,G, I, J, K, required for Yop secretion and yscH encoding YopR. Mol Microbiol. 1995;18:34355. DOIPubMedGoogle Scholar
  52. Allaoui  A, Scheen  R, de Rouvroit  CL, Cornelis  GR. VirG, a Yersinia enterocolitica lipoprotein involved in Ca2+ dependency, is related to ExsB of Pseudomonas aeruginosa. J Bacteriol. 1995;177:42307.PubMedGoogle Scholar
  53. Macnab  RM. Flagella and Motility. In: Neidhardt FC et al., editors. Escherichia coli and Salmonella typhimurium Cellular and Molecular Biology. Washington, D. C.: ASM Press, 1996.
  54. Rimpiläinen  M, Forsberg  Å, Wolf-Watz  H. A novel protein, LcrQ, involved in the low-calcium response of Yersinia pseudotuberculosis shows extensive homology to YopH. J Bacteriol. 1992;174:335563.PubMedGoogle Scholar
  55. Håkansson  S, Bergman  T, Vanooteghem  J-C, Cornelis  G, Wolf-Watz  H. YopB and YopD constitute a novel class of Yersinia Yop proteins. Infect Immun. 1993;61:7180.PubMedGoogle Scholar
  56. Wattiau  P, Woestyn  S, Cornelis  GR. Customized secretion chaperones in pathogenic bacteria. Mol Microbiol. 1996;20:25562. DOIPubMedGoogle Scholar
  57. Frithz-Lindsten  E, Rosqvist  R, Johansson  L, Forsberg  Å. The chaperone-like protein YerA of Yersinia pseudotuberculosis stabilizes YopE in the cytoplasm but is dispensable for targeting to the secretion loci. Mol Microbiol. 1995;16:63547. DOIPubMedGoogle Scholar
  58. Ménard  R, Sansonetti  P, Parsot  C, Vasselon  T. Extracellular association and cytoplasmic partitioning of the IpaB and IpaC invasins of S. flexneri. Cell. 1994;79:51525. DOIPubMedGoogle Scholar
  59. Skrzypek  E, Straley  SC. LcrG, a secreted protein involved in negative regulation of the low-calcium response in Yersinia pestis. J Bacteriol. 1993;175:35208.PubMedGoogle Scholar
  60. Forsberg  Å, Viitanen  A-M, Skurnik  M, Wolf-Watz  H. The surface-located YopN protein is involved in calcium signal transduction in Yersinia pseudotuberculosis. Mol Microbiol. 1991;5:97786. DOIPubMedGoogle Scholar
  61. Hughes  KT, Gillen  KL, Semon  MJ, Karlinsey  JE. Sensing structural intermediates in bacterial flagellar assembly by export of a negative regulator. Science. 1993;262:127780. DOIPubMedGoogle Scholar
  62. Ginocchio  C, Galán  JE. Functional conservation among members of the Salmonella typhimurium InvA family of proteins. Infect Immun. 1994;63:72932.
  63. Jarvis  KG, Girón  JA, Jerse  AE, McDaniel  TK, Donnenberg  MS, Kaper  JB. Enteropathogenic Escherichia coli contains a putative type III secretion system necessary for the export of proteins involved in attaching and effacing lesion formation. Proc Natl Acad Sci U S A. 1995;92:79968000. DOIPubMedGoogle Scholar
  64. Ochman  H, Groisman  EA. The evolution of invasion by enteric bacteria. Can J Microbiol. 1995;41:55561. DOIPubMedGoogle Scholar
  65. Li  J, Ochman  H, Groisman  EA, Boyd  EF, Solomon  F, Nelson  K, Relationship between evolutionary rate and cellular location among the Inv/Spa invasion proteins of Salmonella enterica. Proc Natl Acad Sci U S A. 1995;92:72526. DOIPubMedGoogle Scholar
  66. Lee  CA. Pathogenicity islands and the evolution of bacterial pathogens. Infect Agents Dis. 1996;5:17.PubMedGoogle Scholar
  67. Morschhäuser  J, Vetter  V, Emödy  L, Hacker  J. Adhesin regulatory genes within large, unstable DNA regions of pathogenic Escherichia coli: cross-talk between different adhesin gene clusters. Mol Microbiol. 1994;11:55566. DOIPubMedGoogle Scholar
  68. Mills  DM, Bajaj  V, Lee  CA. A 40 kb chromosomal fragment encoding Salmonella typhimurium invasion genes is absent from the corresponding region of the Escherichia coli K-12 chromosome. Mol Microbiol. 1995;15:74959. DOIPubMedGoogle Scholar
  69. Stein  MA, Leung  KY, Zwick  M, Garcia-del Portillo  F, Finlay  BB. Identification of a Salmonella virulence gene required for formation of filamentous structures containing lysosomal membrane glycoproteins within epithelial cells. Mol Microbiol. 1996;20:15164. DOIPubMedGoogle Scholar
  70. Fetherston  JD, Schuetze  P, Perry  RD. Loss of the pigmentation phenotype in Yersinia pestis is due to the spontaneous deletion of 102 kb of chromosomal DNA which is flanked by a repetitive element. Mol Microbiol. 1992;6:2693704. DOIPubMedGoogle Scholar
  71. Fetherston  JD, Perry  RD. The pigmentation locus of Yersinia pestis KIM6+ is flanked by an insertion sequence and includes the structural genes for pesticin sensitivity and HMWP2. Mol Microbiol. 1994;13:697708. DOIPubMedGoogle Scholar
  72. Iteman  I, Guiyoule  A, de Almeida  AMP, Guilvout  I, Baranton  G, Carniel  E. Relationship between loss of pigmentation and deletion of the chromosomal iron-regulated irp2 gene in Yersinia pestis: evidence for separate but related events. Infect Immun. 1993;61:271722.PubMedGoogle Scholar
  73. Rakin  A, Urbitsch  P, Heeseman  J. Evidence for two evolutionary lineages of highly pathogenic Yersinia species. J Bacteriol. 1995;177:22928.PubMedGoogle Scholar
  74. Matic  I, Taddei  F, Radman  M. Genetic barriers among bacteria. Trends Microbiol. 1996;4:6973. DOIPubMedGoogle Scholar
  75. Falkow  S. The evolution of pathogenicity in Escherichia, Shigella, and Salmonella. In: Neidhardt FC, et al. Escherichia coli and Salmonella Cellular and Molecular Biology. Washington, D. C.: ASM Press, 1996.
  76. Waldor  MK, Mekalanos  JJ. Cholera toxin is encoded by a filamentous bacteriophage that uses TCP pili as a receptor. Science. 1996;272:19104. DOIPubMedGoogle Scholar
  77. Guttman  DS, Dykhuizen  DE. Clonal divergence in Escherichia coli as a result of recombination, not mutation. Science. 1994;266:13803. DOIPubMedGoogle Scholar
  78. Inouye  S, Sunshine  MG, Six  EW, Inouye  M. Retronphage R73: an E. coli phage that contains a retroelement and integrates into a tRNA gene. Science. 1991;252:96971. DOIPubMedGoogle Scholar
  79. Reiter  W, Palm  P, Yeats  S. Transfer RNA genes frequently serve as integration sites for prokaryotic genetic elements. Nucleic Acids Res. 1989;17:190714. DOIPubMedGoogle Scholar
  80. Sun  J, Inouye  M, Inouye  S. Association of a retroelement with a P4-like cryptic prophage (Retronphage R73) integrated into the selenocystyl tRNA gene of Escherichia coli. J Bacteriol. 1991;173:417181.PubMedGoogle Scholar
  81. Akerley  BJ, Cotter  PA, Miller  JF. Ectopic expression of the flagellar regulon alters development of the Bordetella host interaction. Cell. 1995;80:61120. DOIPubMedGoogle Scholar
  82. Blum  G, Ott  M, Lischewski  A, Ritter  A, Imrich  H, Tschape  H, Excision of large DNA regions termed pathogenicity islands from tRNA-specific loci in the chromosome of an Escherichia coli wild-type pathogen. Infect Immun. 1994;62:60614.PubMedGoogle Scholar
  83. McDaniel  TK, Jarvis  KG, Donnenberg  MS, Kaper  JB. A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens. Proc Natl Acad Sci U S A. 1995;92:16648. DOIPubMedGoogle Scholar
  84. Ritter  A, Blum  G, Emody  L, Kerenyi  M, Bock  A, Neuhierl  B, tRNA genes and pathogenicity islands: influence on virulence and metabolic properties of uropathogenic Escherichia coli. Mol Microbiol. 1995;17:10921. DOIPubMedGoogle Scholar
  85. Zagaglia  C, Casalino  M, Colonna  B, Conti  C, Calconi  A, Nicoletti  M. Virulence plasmids of enteroinvasive Escherichia coli and Shigella flexneri integrate into a specific site on the host chromosome: integration greatly reduces expression of plasmid-carried virulence genes. Infect Immun. 1991;59:7929.PubMedGoogle Scholar
  86. Colonna  B, Casalino  M, Fradiani  PA, Zagaglia  C, Naitza  S, Leoni  L, H-NS regulation of virulence gene expression in enteroinvasive Escherichia coli harboring the virulence plasmid integrated into the host chromosome. J Bacteriol. 1995;177:470312.PubMedGoogle Scholar
  87. Zsigray  RM, Hopper  JB, Zukowski  K, Chesbro  WR. Integration of the Vwa plasmid into the chromosome of Yersinia pestis strains harboring F' plasmids of Escherichia coli. Infect Immun. 1985;47:6703.PubMedGoogle Scholar
  88. Zsigray  RM, Lawton  WD, Surgalla  MJ. Repression of the virulence of Yersinia pestis by an F' plasmid. Infect Immun. 1983;39:9746.PubMedGoogle Scholar
  89. Protsenko  OA, Filippov  AA, Kutyrev  VV. Integration of the plasmid encoding the synthesis of capsular antigen and murine toxin into Yersinia pestis chromosome. Microb Pathog. 1991;11:1238. DOIPubMedGoogle Scholar
  90. Whittam  TS, Wolfe  ML, Wachsmuth  IK, Ørskov  F, Ørskov  I, Wilson  RA. Clonal relationships among Escherichia coli strains that cause hemorrhagic colitis and infantile diarrhea. Infect Immun. 1993;61:161929.PubMedGoogle Scholar
  91. Waldor  MK, Mekalanos  JJ. Vibrio cholerae O139 specific gene sequences. Lancet. 1994;343:1366. DOIPubMedGoogle Scholar
  92. Pajni  S, Charu  S, Bhasin  N, Ghosh  A, Ramamurthy  T, Nair  GB, Studies on the genesis of Vibrio cholerae O139: identification of probable progenitor strains. Journal of Molecular Microbiology. 1995;42:205. DOIGoogle Scholar
  93. Bik  EM, Bunschoten  AE, Gouw  RD, Mooi  FR. Genesis of the novel epidemic Vibrio cholerae 139 strain: evidence for horizontal transfer of genes involved in polysaccharide synthesis. EMBO J. 1995;14:20916.PubMedGoogle Scholar
  94. Sory  M-P, Hermand  P, Vaerman  J-P, Cornelius  GR. Oral immunization of mice with a live recombinant Yersinia enterocolitica O:9 strain that produces the cholera toxin B subunit. Infect Immun. 1990;58:38306.
  95. Falkow  S, Small  P, Isberg  R, Hayes  SF, Corwin  D. A molecular strategy for the study of bacterial invasion. Rev Infect Dis. 1987;9:S4505.PubMedGoogle Scholar
  96. Swenson  DL, Bukanov  NO, Berg  DE, Welch  RA. Two pathogenicity islands in uropathogenic Escherichia coli strain J96: cosmid cloning and sample sequencing. Infect Immun. 1996;64:373643.PubMedGoogle Scholar
  97. Blum  G, Falbo  V, Caprioli  A, Hacker  J. Gene clusters encoding the cytotoxic necrotizing factor type 1, prs-fimbriae and -hemolysin form the pathogenicity island II of the uropathogenic Escherichia coli strain J96. Federation of European Microbiological Societies Microbiology Letters. 1995;126:18996.
  98. Comstock  LE, Johnson  JA, Michalski  JM, Morris  JG Jr, Kaper  JB. Cloning and sequence of a region encoding a surface polysaccharide of Vibrio cholerae O139 and characterization of the insertion site in the chromosome of Vibrio cholerae 01. Mol Microbiol. 1996;19:81526. DOIPubMedGoogle Scholar
  99. Gouin  E, Mengaud  J, Cossart  P. The virulence gene cluster of Listeria monocytogenes is also present in Listeria ivanovii, an animal pathogen, and Listeria seeligeri, a nonpathogenic species. Infect Immun. 1994;62:35503.PubMedGoogle Scholar

Main Article

Page created: December 21, 2010
Page updated: December 21, 2010
Page reviewed: December 21, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external