Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 21, Number 7—July 2015
Dispatch

Ebola Virus Stability on Surfaces and in Fluids in Simulated Outbreak Environments

Robert J. Fischer1, Seth D. Judson1, Kerri Miazgowicz, Trenton Bushmaker, Joseph B. Prescott, and Vincent J. MunsterComments to Author 
Author affiliations: National Institutes of Health, Hamilton, Montana, USA

Main Article

Figure 2

Linear regression model showing stability of Ebola virus (EBOV) in fluids under different environmental conditions. A) EBOV stability in water at 2 environmental temperatures. Virus concentration was reduced at a significantly faster rate in 27°C water than in 21°C water (p = 0.0001). B) Stability in drying or liquid EBOV-spiked human blood samples at 2 environmental conditions. Virus concentration was reduced at a significantly faster rate by drying than in liquid blood at both conditions (p&lt

Figure 2. Linear regression model showing stability of Ebola virus (EBOV) in fluids under different environmental conditions. A) EBOV stability in water at 2 environmental temperatures. Virus concentration was reduced at a significantly faster rate in 27°C water than in 21°C water (p = 0.0001). B) Stability in drying or liquid EBOV-spiked human blood samples at 2 environmental conditions. Virus concentration was reduced at a significantly faster rate by drying than in liquid blood at both conditions (p<0.0001 for each condition). No significant difference between reduction rates in virus titer in drying human blood at both conditions was found (p = 0.92). Triplicate samples were taken at each time point. Error bars indicate mean ± SEM virus titer. Dashed line indicates the limit of detection for the assay. An analysis of covariance equivalent test was used to compare linear regression models and determine differences in virus reduction rates. TCID50, 50% tissue culture infectious dose.

Main Article

1These authors contributed equally to this article.

Page created: June 16, 2015
Page updated: June 16, 2015
Page reviewed: June 16, 2015
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external