Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

Volume 19, Number 7—July 2013

Volume 19, Number 7—July 2013   PDF Version [PDF - 6.83 MB - 155 pages]


  • Medscape CME Activity
    Transmission of Streptococcus equi Subspecies zooepidemicus Infection from Horses to Humans PDF Version [PDF - 894 KB - 8 pages]
    S. Pelkonen et al.
    View Summary

    This agent may cause severe illness in humans and should be considered an emerging zoonosis.

        View Abstract

    Streptococcus equi subspecies zooepidemicus (S. zooepidemicus) is a zoonotic pathogen for persons in contact with horses. In horses, S. zooepidemicus is an opportunistic pathogen, but human infections associated with S. zooepidemicus are often severe. Within 6 months in 2011, 3 unrelated cases of severe, disseminated S. zooepidemicus infection occurred in men working with horses in eastern Finland. To clarify the pathogen’s epidemiology, we describe the clinical features of the infection in 3 patients and compare the S. zooepidemicus isolates from the human cases with S. zooepidemicus isolates from horses. The isolates were analyzed by using pulsed-field gel electrophoresis, multilocus sequence typing, and sequencing of the szP gene. Molecular typing methods showed that human and equine isolates were identical or closely related. These results emphasize that S. zooepidemicus transmitted from horses can lead to severe infections in humans. As leisure and professional equine sports continue to grow, this infection should be recognized as an emerging zoonosis.


  • Travel-associated Illness Trends and Clusters, 2000–2010 PDF Version [PDF - 1.41 MB - 9 pages]
    K. Leder et al.
    View Summary

    Enteric fever, dengue, and rabies are increasing; malaria is decreasing; and malaria, dengue, and enteric fever were detected in clusters.

        View Abstract

    Longitudinal data examining travel-associated illness patterns are lacking. To address this need and determine trends and clusters in travel-related illness, we examined data for 2000–2010, prospectively collected for 42,223 ill travelers by 18 GeoSentinel sites. The most common destinations from which ill travelers returned were sub-Saharan Africa (26%), Southeast Asia (17%), south-central Asia (15%), and South America (10%). The proportion who traveled for tourism decreased significantly, and the proportion who traveled to visit friends and relatives increased. Among travelers returning from malaria-endemic regions, the proportionate morbidity (PM) for malaria decreased; in contrast, the PM trends for enteric fever and dengue (excluding a 2002 peak) increased. Case clustering was detected for malaria (Africa 2000, 2007), dengue (Thailand 2002, India 2003), and enteric fever (Nepal 2009). This multisite longitudinal analysis highlights the utility of sentinel surveillance of travelers for contributing information on disease activity trends and an evidence base for travel medicine recommendations.

  • Quantifying Effect of Geographic Location on Epidemiology of Plasmodium vivax Malaria PDF Version [PDF - 455 KB - 8 pages]
    A. A. Lover and R. J. Coker
    View Summary

    Regional variations should be considered in patient care, surveillance, and control programs.

        View Abstract

    Recent autochthonous transmission of Plasmodium vivax malaria in previously malaria-free temperate regions has generated renewed interest in the epidemiology of this disease. Accurate estimates of the incubation period and time to relapse are required for effective malaria surveillance; however, this information is currently lacking. By using historical data from experimental human infections with diverse P. vivax strains, survival analysis models were used to obtain quantitative estimates of the incubation period and time to first relapse for P. vivax malaria in broad geographic regions. Results show that Eurasian strains from temperate regions have longer incubation periods, and Western Hemisphere strains from tropical and temperate regions have longer times to relapse compared with Eastern Hemisphere strains. The diversity in these estimates of key epidemiologic parameters for P. vivax supports the need for elucidating local epidemiology to inform clinical follow-up and to build an evidence base toward global elimination of malaria.

  • Mutation in Spike Protein Cleavage Site and Pathogenesis of Feline Coronavirus PDF Version [PDF - 663 KB - 8 pages]
    B. N. Licitra et al.
    View Summary

    Feline Coronavirus spike proteolytic requirement modifications may facilitate development of novel diagnostic and vaccine strategies against human strains.

        View Abstract

    Feline coronaviruses (FCoV) exist as 2 biotypes: feline enteric coronavirus (FECV) and feline infectious peritonitis virus (FIPV). FECV causes subclinical infections; FIPV causes feline infectious peritonitis (FIP), a systemic and fatal disease. It is thought that mutations in FECV enable infection of macrophages, causing FIP. However, the molecular basis for this biotype switch is unknown. We examined a furin cleavage site in the region between receptor-binding (S1) and fusion (S2) domains of the spike of serotype 1 FCoV. FECV sequences were compared with FIPV sequences. All FECVs had a conserved furin cleavage motif. For FIPV, there was a correlation with the disease and >1 substitution in the S1/S2 motif. Fluorogenic peptide assays confirmed that the substitutions modulate furin cleavage. We document a functionally relevant S1/S2 mutation that arises when FIP develops in a cat. These insights into FIP pathogenesis may be useful in development of diagnostic, prevention, and treatment measures against coronaviruses.

  • Pneumococcal Serotypes before and after Introduction of Conjugate Vaccines, United States, 1999–2011 PDF Version [PDF - 506 KB - 10 pages]
    S. S. Richter et al.
    View Summary

    Monitoring of serotypes causing disease provides insight into pathogenesis and vaccine composition.

        View Abstract

    Serotyping data for pneumococci causing invasive and noninvasive disease in 2008–2009 and 2010–2011 from >43 US centers were compared with data from preconjugate vaccine (1999–2000) and postconjugate vaccine (2004–2005) periods. Prevalence of 7-valent pneumococcal conjugate vaccine serotypes decreased from 64% of invasive and 50% of noninvasive isolates in 1999–2000 to 3.8% and 4.2%, respectively, in 2010–2011. Increases in serotype 19A stopped after introduction of 13-valent pneumococcal vaccine (PCV13) in 2010. Prevalences of other predominant serotypes included in or related to PCV13 (3, 6C, 7F) also remained similar for 2008–2009 and 2010–2011. The only major serotype that increased from 2008–2009 to 2010–2011 was nonvaccine serotype 35B. These data show that introduction of the 7-valent vaccine has dramatically decreased prevalence of its serotypes and that addition of serotypes in PCV13 could provide coverage of 39% of isolates that continue to cause disease.

  • Influence of Pneumococcal Vaccines and Respiratory Syncytial Virus on Alveolar Pneumonia, Israel PDF Version [PDF - 991 KB - 8 pages]
    D. M. Weinberger et al.
    View Summary

    Year-to-year fluctuations in RSV bias estimates of vaccine impact in young children in the first few years after vaccine introduction.

        View Abstract

    Postlicensure surveillance of pneumonia incidence can be used to estimate whether pneumococcal conjugate vaccines (PCVs) affect incidence. We used Poisson regression models that control for baseline seasonality to determine the impact of PCVs and the possible effects of variations in virus activity in Israel on these surveillance estimates. PCV was associated with significant declines in radiologically confirmed alveolar pneumonia (RCAP) among patients <6 months, 6–17 months, and 18–35 months of age (–31% [95% CI –51% to –15%], –41% [95% CI –52 to –32%], and –34% [95% CI –42% to –25%], respectively). Respiratory syncytial virus (RSV) activity was associated with strong increases in RCAP incidence, with up to 44% of cases attributable to RSV among infants <6 months of age and lower but significant impacts in older children. Seasonal variations, particularly in RSV activity, masked the impact of 7-valent PCVs, especially for young children in the first 2 years after vaccine introduction.



Books and Media

About the Cover


Online Reports

  • Peer Reviewed Report Available Online Only
    Influence of Humans on Evolution and Mobilization of Environmental Antibiotic Resistome
    W. H. Gaze et al.
        View Abstract

    The clinical failure of antimicrobial drugs that were previously effective in controlling infectious disease is a tragedy of increasing magnitude that gravely affects human health. This resistance by pathogens is often the endpoint of an evolutionary process that began billions of years ago in non–disease-causing microorganisms. This environmental resistome, its mobilization, and the conditions that facilitate its entry into human pathogens are at the heart of the current public health crisis in antibiotic resistance. Understanding the origins, evolution, and mechanisms of transfer of resistance elements is vital to our ability to adequately address this public health issue.