Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 23, Number 2—February 2017
Research

Highly Pathogenic Influenza A(H5Nx) Viruses with Altered H5 Receptor-Binding Specificity

Hongbo Guo1, Erik de Vries1, Ryan McBride, Jojanneke Dekkers, Wenjie Peng, Kim M. Bouwman, Corwin Nycholat, M. Helene Verheije, James C. Paulson, Frank J.M. van Kuppeveld, and Cornelis A.M. de HaanComments to Author 
Author affiliations: Utrecht University, Utrecht, the Netherlands (H. Guo, E. de Vries, J. Dekkers, K.M. Bouwman, M.H. Verheije, F.J.M. van Kuppeveld, C.A.M. de Haan); The Scripps Research Institute, La Jolla, California, USA (R. McBride, W. Peng, C. Nycholat, J.C. Paulson)

Main Article

Figure 8

Structural models of influenza A virus H5 proteins complexed with 3′SLeX. A) Clade 1 H5 (H5N11 of A/Vietnam/1194/2004) complexed with 3′SLeX (PDB 3ZNM0 (29). B) H5N12.3.4 and C) H5N8 hemagglutinins were modeled into the structure shown in panel A as detailed in Materials and Methods. Key amino acids are indicated and shown in a stick representation. C (gray), O (red), and N (blue) in the side chains are colored. SIA, Gal, GlcNAc, and Fuc moieties of 3′SLeX are shown in purple, yellow, blue, and

Figure 8. Structural models of influenza A virus H5 proteins complexed with 3′SLeX. A) Clade 1 H5 (H5N11 of A/Vietnam/1194/2004) complexed with 3′SLeX (PDB 3ZNM0 (29). B) H5N12.3.4 and C) H5N8 hemagglutinins were modeled into the structure shown in panel A as detailed in Materials and Methods. Key amino acids are indicated and shown in a stick representation. C (gray), O (red), and N (blue) in the side chains are colored. SIA, Gal, GlcNAc, and Fuc moieties of 3′SLeX are shown in purple, yellow, blue, and red, respectively. Hydrogen bonds are indicated by dotted lines. H5N12.3.4, novel H5N1 virus clade 2.3.4; H5N11, H5N1 virus clade 1.

Main Article

References
  1. de Vries  E, Guo  H, Dai  M, Rottier  PJ, van Kuppeveld  FJ, de Haan  CA. Rapid emergence of highly pathogenic avian influenza subtypes from a subtype H5N1 hemagglutinin variant. Emerg Infect Dis. 2015;21:8426. DOIPubMedGoogle Scholar
  2. Saito  T, Tanikawa  T, Uchida  Y, Takemae  N, Kanehira  K, Tsunekuni  R. Intracontinental and intercontinental dissemination of Asian H5 highly pathogenic avian influenza virus (clade 2.3.4.4) in the winter of 2014-2015. Rev Med Virol. 2015;25:388405. DOIPubMedGoogle Scholar
  3. Ip  HS, Torchetti  MK, Crespo  R, Kohrs  P, DeBruyn  P, Mansfield  KG, et al. Novel Eurasian highly pathogenic avian influenza A H5 viruses in wild birds, Washington, USA, 2014. Emerg Infect Dis. 2015;21:88690. DOIPubMedGoogle Scholar
  4. Pasick  J, Berhane  Y, Joseph  T, Bowes  V, Hisanaga  T, Handel  K, et al. Reassortant highly pathogenic influenza A H5N2 virus containing gene segments related to Eurasian H5N8 in British Columbia, Canada, 2014. Sci Rep. 2015;5:9484. DOIPubMedGoogle Scholar
  5. Swayne  DE. High pathogenicity avian influenza in the Americas. In: Swayne DE, editor. Avian influenza. Oxford (UK): Blackwell; 2009. p. 191–216.
  6. 2016 HPAI preparedness and response plan. Animal and Plant Health Inspection Service Veterinary Services [cited 2016 Oct 21]. https://www.aphis.usda.gov/animal_health/downloads/animal_diseases/ai/hpai-preparedness-and-response-plan-2015.pdf
  7. Shen  YY, Ke  CW, Li  Q, Yuan  RY, Xiang  D, Jia  WX, et al. Novel reassortant avian influenza A(H5N6) viruses in humans, Guangdong, China, 2015. Emerg Infect Dis. 2016;22:15079. DOIPubMedGoogle Scholar
  8. Böttcher-Friebertshäuser  E, Garten  W, Matrosovich  M, Klenk  HD. The hemagglutinin: a determinant of pathogenicity. Curr Top Microbiol Immunol. 2014;385:334. DOIPubMedGoogle Scholar
  9. Wu  H, Peng  X, Xu  L, Jin  C, Cheng  L, Lu  X, et al. Novel reassortant influenza A(H5N8) viruses in domestic ducks, eastern China. Emerg Infect Dis. 2014;20:13158. DOIPubMedGoogle Scholar
  10. Lee  YJ, Kang  HM, Lee  EK, Song  BM, Jeong  J, Kwon  YK, et al. Novel reassortant influenza A(H5N8) viruses, South Korea, 2014. Emerg Infect Dis. 2014;20:10879. DOIPubMedGoogle Scholar
  11. Ku  KB, Park  EH, Yum  J, Kim  JA, Oh  SK, Seo  SH. Highly pathogenic avian influenza A(H5N8) virus from waterfowl, South Korea, 2014. Emerg Infect Dis. 2014;20:15878. DOIPubMedGoogle Scholar
  12. FAO warns of new strain of avian influenza virus. Vet Rec. 2014;175:343. DOIPubMedGoogle Scholar
  13. Liu  CG, Liu  M, Liu  F, Lv  R, Liu  DF, Qu  LD, et al. Emerging multiple reassortant H5N5 avian influenza viruses in ducks, China, 2008. Vet Microbiol. 2013;167:296306. DOIPubMedGoogle Scholar
  14. Qi  X, Cui  L, Yu  H, Ge  Y, Tang  F. Whole-genome sequence of a reassortant H5N6 avian influenza virus isolated from a live poultry market in China, 2013. Genome Announc. 2014;2:e0070614. DOIPubMedGoogle Scholar
  15. Zhao  K, Gu  M, Zhong  L, Duan  Z, Zhang  Y, Zhu  Y, et al. Characterization of three H5N5 and one H5N8 highly pathogenic avian influenza viruses in China. Vet Microbiol. 2013;163:3517. DOIPubMedGoogle Scholar
  16. World Health Organization. Evolution of the influenza A(H5) haemagglutinin: WHO/OIE/FAO H5 Working Group reports a new clade designated 2.3.4.4 [cited 2015 Jan 19]. http://www.who.int/influenza/gisrs_laboratory/h5_nomenclature_clade2344/en/
  17. Gu  M, Huang  J, Chen  Y, Chen  J, Wang  X, Liu  X, et al. Genome sequence of a natural reassortant H5N2 avian influenza virus from domestic mallard ducks in eastern China. J Virol. 2012;86:124634. DOIPubMedGoogle Scholar
  18. Connor  RJ, Kawaoka  Y, Webster  RG, Paulson  JC. Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. Virology. 1994;205:1723. DOIPubMedGoogle Scholar
  19. Paulson  JC, de Vries  RP. H5N1 receptor specificity as a factor in pandemic risk. Virus Res. 2013;178:99113. DOIPubMedGoogle Scholar
  20. Gambaryan  A, Yamnikova  S, Lvov  D, Tuzikov  A, Chinarev  A, Pazynina  G, et al. Receptor specificity of influenza viruses from birds and mammals: new data on involvement of the inner fragments of the carbohydrate chain. Virology. 2005;334:27683. DOIPubMedGoogle Scholar
  21. Wagner  R, Matrosovich  M, Klenk  HD. Functional balance between haemagglutinin and neuraminidase in influenza virus infections. Rev Med Virol. 2002;12:15966. DOIPubMedGoogle Scholar
  22. Sun  H, Pu  J, Wei  Y, Sun  Y, Hu  J, Liu  L, et al. Highly pathogenic avian influenza H5N6 viruses exhibit enhanced affinity for human type sialic acid receptor and in-contact transmission in model ferrets. J Virol. 2016;90:623543. DOIPubMedGoogle Scholar
  23. Yang  H, Carney  PJ, Mishin  VP, Guo  Z, Chang  JC, Wentworth  DE, et al. The molecular characterizations of surface proteins hemagglutinin and neuraminidase from recent H5Nx avian influenza viruses. J Virol. 2016;90:577084. DOIPubMedGoogle Scholar
  24. de Vries  RP, de Vries  E, Moore  KS, Rigter  A, Rottier  PJ, de Haan  CA. Only two residues are responsible for the dramatic difference in receptor binding between swine and new pandemic H1 hemagglutinin. J Biol Chem. 2011;286:586875. DOIPubMedGoogle Scholar
  25. Dortmans  JC, Dekkers  J, Wickramasinghe  IN, Verheije  MH, Rottier  PJ, van Kuppeveld  FJ, et al. Adaptation of novel H7N9 influenza A virus to human receptors. Sci Rep. 2013;3:3058. DOIPubMedGoogle Scholar
  26. Dohi  T, Nemoto  T, Ohta  S, Shitara  K, Hanai  N, Nudelman  E, et al. Different binding properties of three monoclonal antibodies to sialyl Le(x) glycolipids in a gastric cancer cell line and normal stomach tissue. Anticancer Res. 1993;13(5A):127782.PubMedGoogle Scholar
  27. Wickramasinghe  IN, de Vries  RP, Gröne  A, de Haan  CA, Verheije  MH. Binding of avian coronavirus spike proteins to host factors reflects virus tropism and pathogenicity. J Virol. 2011;85:890312. DOIPubMedGoogle Scholar
  28. Wickramasinghe  IN, de Vries  RP, Eggert  AM, Wandee  N, de Haan  CA, Gröne  A, et al. Host tissue and glycan binding specificities of avian viral attachment proteins using novel avian tissue microarrays. PLoS One. 2015;10:e0128893. DOIPubMedGoogle Scholar
  29. Xiong  X, Tuzikov  A, Coombs  PJ, Martin  SR, Walker  PA, Gamblin  SJ, et al. Recognition of sulphated and fucosylated receptor sialosides by A/Vietnam/1194/2004 (H5N1) influenza virus. Virus Res. 2013;178:124. DOIPubMedGoogle Scholar
  30. Guex  N, Peitsch  MC. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997;18:271423. DOIPubMedGoogle Scholar
  31. Schwede  T, Kopp  J, Guex  N, Peitsch  MC. SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res. 2003;31:33815. DOIPubMedGoogle Scholar
  32. Baenziger  JU, Fiete  D. Structure of the complex oligosaccharides of fetuin. J Biol Chem. 1979;254:78995.PubMedGoogle Scholar
  33. Spiro  RG, Bhoyroo  VD. Structure of the O-glycosidically linked carbohydrate units of fetuin. J Biol Chem. 1974;249:570417.PubMedGoogle Scholar
  34. Spik  G, Bayard  B, Fournet  B, Strecker  G, Bouquelet  S, Montreuil  J. Studies on glycoconjugates. LXIV. Complete structure of two carbohydrate units of human serotransferrin. FEBS Lett. 1975;50:2969. DOIPubMedGoogle Scholar
  35. Smith  GJ, Donis  RO. World Health Organization/World Organisation for Animal Health/Food and Agriculture Organization (WHO/OIE/FAO) H5 Evolution Working Group. Nomenclature updates resulting from the evolution of avian influenza A(H5) virus clades 2.1.3.2a, 2.2.1, and 2.3.4 during 2013–2014. Influenza Other Respir Viruses. 2015;9:271–6. DOIGoogle Scholar
  36. Hiono  T, Okamatsu  M, Nishihara  S, Takase-Yoden  S, Sakoda  Y, Kida  H. A chicken influenza virus recognizes fucosylated α2,3 sialoglycan receptors on the epithelial cells lining upper respiratory tracts of chickens. Virology. 2014;456-457:1318. DOIPubMedGoogle Scholar
  37. Gambaryan  A, Tuzikov  A, Pazynina  G, Bovin  N, Balish  A, Klimov  A. Evolution of the receptor binding phenotype of influenza A (H5) viruses. Virology. 2006;344:4328. DOIPubMedGoogle Scholar
  38. Okamatsu  M, Saito  T, Yamamoto  Y, Mase  M, Tsuduku  S, Nakamura  K, et al. Low pathogenicity H5N2 avian influenza outbreak in Japan during the 2005-2006. Vet Microbiol. 2007;124:3546. DOIPubMedGoogle Scholar
  39. Hiono  T, Okamatsu  M, Igarashi  M, McBride  R, de Vries  RP, Peng  W, et al. Amino acid residues at positions 222 and 227 of the hemagglutinin together with the neuraminidase determine binding of H5 avian influenza viruses to sialyl Lewis X. Arch Virol. 2016;161:30716. DOIPubMedGoogle Scholar
  40. Sugiura  K, Yamamoto  M, Nishida  T, Tsukamoto  D, Saito  T, Onodera  T. Recent outbreaks of avian influenza in Japan. Rev Sci Tech. 2009;28:100513. DOIPubMedGoogle Scholar
  41. Gambaryan  AS, Tuzikov  AB, Pazynina  GV, Desheva  JA, Bovin  NV, Matrosovich  MN, et al. 6-sulfo sialyl Lewis X is the common receptor determinant recognized by H5, H6, H7 and H9 influenza viruses of terrestrial poultry. Virol J. 2008;5:85. DOIPubMedGoogle Scholar
  42. Gambaryan  AS, Matrosovich  TY, Philipp  J, Munster  VJ, Fouchier  RA, Cattoli  G, et al. Receptor-binding profiles of H7 subtype influenza viruses in different host species. J Virol. 2012;86:43709. DOIPubMedGoogle Scholar
  43. Gambaryan  AS, Tuzikov  AB, Pazynina  GV, Webster  RG, Matrosovich  MN, Bovin  NV. H5N1 chicken influenza viruses display a high binding affinity for Neu5Acalpha2-3Galbeta1-4(6-HSO3)GlcNAc-containing receptors. Virology. 2004;326:3106. DOIPubMedGoogle Scholar
  44. Heider  A, Mochalova  L, Harder  T, Tuzikov  A, Bovin  N, Wolff  T, et al. Alterations in hemagglutinin receptor-binding specificity accompany the emergence of highly pathogenic avian influenza viruses. J Virol. 2015;89:5395405. DOIPubMedGoogle Scholar
  45. Fang  S, Bai  T, Yang  L, Wang  X, Peng  B, Liu  H, et al. Sustained live poultry market surveillance contributes to early warnings for human infection with avian influenza viruses. Emerg Microbes Infect. 2016;5:e79. DOIPubMedGoogle Scholar
  46. Yuan  R, Wang  Z, Kang  Y, Wu  J, Zou  L, Liang  L, et al. Continuing reassortant of H5N6 subtype highly pathogenic avian influenza virus in Guangdong. Front Microbiol. 2016;7:520. DOIPubMedGoogle Scholar
  47. Bi  Y, Mei  K, Shi  W, Liu  D, Yu  X, Gao  Z, et al. Two novel reassortants of avian influenza A (H5N6) virus in China. J Gen Virol. 2015;96:97581. DOIPubMedGoogle Scholar
  48. Herfst  S, Schrauwen  EJ, Linster  M, Chutinimitkul  S, de Wit  E, Munster  VJ, et al. Airborne transmission of influenza A/H5N1 virus between ferrets. Science. 2012;336:153441. DOIPubMedGoogle Scholar
  49. Imai  M, Watanabe  T, Hatta  M, Das  SC, Ozawa  M, Shinya  K, et al. Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature. 2012;486:4208.PubMedGoogle Scholar
  50. Bi  Y, Liu  H, Xiong  C. Di Liu, Shi W, Li M, et al. Novel avian influenza A (H5N6) viruses isolated in migratory waterfowl before the first human case reported in China, 2014. Sci Rep. 2016;6:29888. DOIGoogle Scholar

Main Article

1These authors contributed equally to this article.

Page created: January 17, 2017
Page updated: January 17, 2017
Page reviewed: January 17, 2017
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external