Volume 11, Number 6—June 2005
Dispatch
Global Spread of Multiple Aminoglycoside Resistance Genes
Figure
References
- Schwaber MJ, Cosgrove SE, Gold HS, Kaye KS, Carmeli Y. Fluoroquinolones protective against cephalosporin resistance in gram-negative nosocomial pathogens. Emerg Infect Dis. 2004;10:94–9.PubMedGoogle Scholar
- Zanetti G, Bally F, Greub G, Garbino J, Kinge T, Lew D, Cefepime versus imipenem-cilastatin for treatment of nosocomial pneumonia in intensive care unit patients: a multicenter, evaluator-blind, prospective, randomized study. Antimicrob Agents Chemother. 2003;47:3442–7. DOIPubMedGoogle Scholar
- Kurokawa H, Yagi T, Shibata N, Shibayama K, Arakawa Y. Worldwide proliferation of carbapenem-resistant gram-negative bacteria. Lancet. 1999;354:955. DOIPubMedGoogle Scholar
- Sahm DF, Thornsberry C, Jones ME, Karlowsky JA. Factors influencing fluoroquinolone resistance. Emerg Infect Dis. 2003;9:1651–4.PubMedGoogle Scholar
- Shaw KJ, Rather PN, Hare RS, Miller GH. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol Rev. 1993;57:138–63.PubMedGoogle Scholar
- Yokoyama K, Doi Y, Yamane K, Kurokawa H, Shibata N, Shibayama K, Acquisition of 16S rRNA methylase gene in Pseudomonas aeruginosa. Lancet. 2003;362:1888–93. DOIPubMedGoogle Scholar
- Doi Y, Yokoyama K, Yamane K, Wachino J, Shibata N, Yagi T, Plasmid-mediated 16S rRNA methylase in Serratia marcescens conferring high-level resistance to aminoglycosides. Antimicrob Agents Chemother. 2004;48:491–6. DOIPubMedGoogle Scholar
- Galimand M, Courvalin P, Lambert T. Plasmid-mediated high-level resistance to aminoglycosides in Enterobacteriaceae due to 16S rRNA methylation. Antimicrob Agents Chemother. 2003;47:2565–71. DOIPubMedGoogle Scholar
- Yan JJ, Wu JJ, Ko WC, Tsai SH, Chuang CL, Wu HM, Plasmid-mediated 16S rRNA methylases conferring high-level aminoglycoside resistance in Escherichia coli and Klebsiella pneumoniae isolates from two Taiwanese hospitals. J Antimicrob Chemother. 2004;54:1007–12. DOIPubMedGoogle Scholar
- Yamane K, Doi Y, Yokoyama K, Yagi T, Kurokawa H, Shibata N, Genetic environments of the rmtA gene found in Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother. 2004;48:2069–74. DOIPubMedGoogle Scholar
- Lambert T, Galimand M, Sabtcheva S, Courvalin P. The armA aminoglycoside resistance methylase gene is borne by composite transposon Tn1548 [Abstract C1-1496]. Presented at the 44th Interscience Conference on Antimicrobial Agents and Chemotherapy; Washington; 2004 Oct 30–Nov 2.
- Doi Y, Wachino J, Yamane K, Shibata N, Yagi T, Shibayama K, Spread of novel aminoglycoside resistance gene aac(6')-Iad among Acinetobacter clinical isolates in Japan. Antimicrob Agents Chemother. 2004;48:2075–80. DOIPubMedGoogle Scholar
- Galimand M, Sabtcheva S, Kantardjiev T, Poirel L, Arlet G, Courvalin P, The armA aminoglycoside resistance methylase gene is disseminated in Enterobacteriaceae by an incL/M plasmid mediating CTX-M-beta-lactamase [Abstract C2-59]. Presented at the 43rd Interscience Conference on Antimicrobial Agents and Chemotherapy; Chicago; 2003 Sep 14–17.
- Frieden TR, Munsiff SS, Low DE, Willey BM, Williams G, Faur Y, Emergence of vancomycin-resistant enterococci in New York City. Lancet. 1993;342:76–9. DOIPubMedGoogle Scholar
Page created: April 24, 2012
Page updated: April 24, 2012
Page reviewed: April 24, 2012
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.