Volume 11, Number 7—July 2005
Dispatch
Caliciviruses and Foodborne Gastroenteritis, Chile
Table 1
Year | No. outbreaks positive*/no. tested |
No. affected in HuCV outbreaks |
|||
---|---|---|---|---|---|
Bacteria† | % | HuCVs | % | Range (median) | |
2000 | 8/13 | 61 | 4/12 | 33 | 3–28 (4) |
2001 | 11/32 | 34 | 6/18 | 33 | 2–54 (5) |
2002 | 6/34 | 18 | 14/22 | 64 | 2–99 (5) |
2003‡ | 1/3 | 33 | 1/3 | 33 | 5 |
Total | 26/82 | 32 | 25/55§ | 45 | 2–99 (5) |
*An outbreak was associated with a given pathogen if ≥1 sample was positive.
†Bacteria isolated included: enteropathogenic Escherichia coli (EPEC) (2), enterotoxigenic E. coli (ETEC) (3), enterohemorrhagic E. coli (3), EPEC + ETEC (1), Salmonella sp (12), Shigella sp (2), Staphylococcus aureus (3).
‡January 1–10, 2003.
§In 1 outbreak, ETEC and EPEC and in another, Shiga toxin–producing E. coli, were concomitantly isolated with HuCV. In 1 additional outbreak the only pathogens simultaneously detected in 1 patient were rotavirus and adenovirus by enzyme-linked immunosorbent assay.
References
- Berg DE, Kohn MA, Farley TA, McFarland LM. Multistate outbreaks of acute gastroenteritis traced to fecal-contaminated oysters harvested in Louisiana. J Infect Dis. 2000;181:S381–6. DOIPubMedGoogle Scholar
- Deneen VC, Hunt JM, Paule CR, James RI, Johnson RG, Raymond MJ, The impact of foodborne calicivirus disease: the Minnesota experience. J Infect Dis. 2000;181:S281–3. DOIPubMedGoogle Scholar
- Gallimore CI, Barreiros MAB, Brown DWG, Nascimento JP, Leite JPG. Noroviruses associated with acute gastroenteritis in a children's day care facility in Rio de Janeiro, Brazil. Braz J Med Biol Res. 2004;37:321–6. DOIPubMedGoogle Scholar
- Gallimore CI, Green J, Lewis D, Richards AF, Lopman BA, Hale AD, Diversity of norovirus cocirculating in the north of England from 1998 to 2001. J Clin Microbiol. 2004;42:1396–401. DOIPubMedGoogle Scholar
- Widdowson MA, Cramer EH, Hadley L, Bresee JS, Beard RS, Bulens SN, Outbreaks of acute gastroenteritis on cruise ships and on land: identification of a predominant circulating strain of norovirus—United States, 2002. J Infect Dis. 2004;190:27–36. DOIPubMedGoogle Scholar
- Fankhauser RL, Noel JS, Monroe SS, Ando T, Glass RI. Molecular epidemiology of "Norwalk-like viruses" in outbreaks of gastroenteritis in the United States. J Infect Dis. 1998;178:1571–8. DOIPubMedGoogle Scholar
- O'Ryan M, Vial P, Mamani N, Jiang X, Estes MK, Ferrecio C, Seroprevalence of Norwalk virus and Mexico virus in Chilean individuals: assessment of independent risk factors for antibody acquisition. Clin Infect Dis. 1998;27:789–95. DOIPubMedGoogle Scholar
- O'Ryan M, Salinas AM, Mamani N, Matson DO, Jiang X, Vial P. Detección de virus Norwalk y México, dos calicivirus humanos en deposiciones de niños chilenos. Rev Med Chil. 1999;127:523–8.PubMedGoogle Scholar
- O'Ryan M, Mamani N, Gaggero A, Avendaño LF, Prieto S, Peña A, Human caliciviruses are a significant pathogen of acute diarrhea in children of Santiago, Chile. J Infect Dis. 2000;182:1519–22. DOIPubMedGoogle Scholar
- Kelly MT, Brenner DJ, Farmer JJ III. Enterobacteriaceae. In: Lennette EH, Balows A, Hausler WJ Jr, editors. Manual of clinical microbiology. 4th ed. Washington, DC: American Society for Microbiology, 1985. p. 263–77.
- Vidal R, Vidal M, Lagos R, Levine M, Prado V. Multiplex PCR for diagnosis of enteric infections associated to diarrheagenic Escherichia coli. J Clin Microbiol. 2004;42:1787–9. DOIPubMedGoogle Scholar
- Jiang X. Development of serological and molecular tests for the diagnosis of calicivirus infection. In: Desselberger U, Gray J, editors. Elsevier Book Series. Perspectives in Medical Virology. 2002. p. 491–508.
- Jiang X, Huang PW, Zhong WM, Farkas T, Cubitt DW, Matson DO. Design and evaluation of a primer pair that detects both Norwalk- and Sapporo-like caliciviruses by RT-PCR. J Virol Methods. 1999;83:145–54. DOIPubMedGoogle Scholar
- Farkas T, Zhong WM, Jing Y, Huang PW, Espinosa SM, Martinez N, Genetic diversity among sapoviruses. Arch Virol. 2004;149:1309–23. DOIPubMedGoogle Scholar
- Kumar S, Tamura K, Jakobsen IB, Nei M. MEGA2: molecular evolutionary genetics analysis software. Bioinformatics. 2001;17:1244–5. DOIPubMedGoogle Scholar
- Steinberg EB, Mendoza CE, Glass R, Arana B. Prevalence of infection with waterborne pathogens: a seroepidemiologic study in children 6–36 months old in San Juan Sacatepequez, Guatemala. Am J Trop Med Hyg. 2004;70:83–8.PubMedGoogle Scholar
Page created: April 24, 2012
Page updated: April 24, 2012
Page reviewed: April 24, 2012
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.