Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 12, Number 4—April 2006
Dispatch

Shrews as Reservoir Hosts of Borna Disease Virus

Monika Hilbe*Comments to Author , Romana Herrsche*, Jolanta Kolodziejek†, Norbert Nowotny†‡, Kati Zlinszky*, and Felix Ehrensperger*
Author affiliations: *University of Zurich, Zurich, Switzerland; †University of Veterinary Medicine, Vienna, Austria; ‡United Arab Emirates University, Al Ain, United Arab Emirates

Main Article

Table

Summary of immunohistologic and real-time RT-PCR findings*

Case no. Organ Immunohistology Real-time RT-PCR Ct values† p24 and p40 (mean of 2 analyses) Real-time RT-PCR Ct values 18S rRNA (mean value) Calibrated values‡ (virus copies; mean of 2 analyses)
134 Brain p24 positive p24: 14.93 / 17.53 13.34 p24: 271.9
p40 positive p40: 15.87 / 19.35 19.64 p40: 40.87
Heart p24 negative p24: 28.07 / 29.54 p24: 2.866
p40 negative p40: 27.94 / 30.05 p40: 1.749
137 Brain p24 positive p24: 24.00 / 25.04 24.41 p24: 13,246
p40 positive p40: 25.50 / 26.95 p40: 2,218.8
Heart p24 negative p24: 33.88 / 38.07 19.66 p24: 0.0204
p40 negative p40: 33.84 / 35.24 p40: 0.0366
144 Brain p24 positive p24: 16.27 / 17.44 13.98 p24: 216.04
p40 positive p40: 17.09 / 18.88 p40: 46.289
Heart p24 positive p24: 32.32 / 33.92 23.83 p24: 2.8235
p40 positive p40: 31.68 / 35.17 p40: 1.3375

*Histologic findings: no lesions on brain or heart for all 3 cases.
†RT-PCR, reverse transcription–polymerase chain reaction; Ct, threshold cycle no.
‡The calibrated values were calculated by using the sum of both normalized Ct-values of Borna disease virus p24 and p40, respectively, and dividing it by the normalized value of the 18s rRNA (5). Each organ was analyzed twice, and the evaluation was performed in duplicate. Please note that the viral load in each animal can be quite variable.

Main Article

References
  1. Nowotny  N, Kolodziejek  J, Jehle  CO, Suchy  A, Staeheli  P, Schwemmle  M. Isolation and characterization of a new subtype of Borna disease virus. J Virol. 2000;74:56558. DOIPubMedGoogle Scholar
  2. Pleschka  S, Staeheli  P, Kolodziejek  J, Richt  JA, Nowotny  N, Schwemmle  M. Conservation of coding potential and terminal sequences in four different isolates of Borna disease virus. J Gen Virol. 2001;82:268190.PubMedGoogle Scholar
  3. Kolodziejek  J, Dürrwald  R, Herzog  S, Ehrensperger  F, Lussy  H, Nowotny  N. Genetic clustering of Borna disease virus natural animal isolates, laboratory and vaccine strains strongly reflects their regional geographical origin. J Gen Virol. 2005;86:38598. DOIPubMedGoogle Scholar
  4. Jordan  I, Lipkin  WI. Borna disease virus. Rev Med Virol. 2001;11:378. DOIPubMedGoogle Scholar
  5. Schindler  AR. Real Time RT-PCR for tracing and quantification of Borna disease virus RNA in diseased hosts compared to experimentally inoculated ticks. Doctoral thesis, University of Zürich. 2004. Available from http://www.dissertationen.unizh.ch/namenalphabet.html
  6. Narayan  O, Herzog  S, Frese  K, Scheefers  H, Rott  R. Behavioral disease in rats caused by immunopathological responses to persistent borna virus in the brain. Science. 1983;220:14013. DOIPubMedGoogle Scholar
  7. Caplazi  P, Melzer  K, Goetzmann  R, Rohner-Cotti  A, Bracher  V, Zlinszky  K, Borna disease in Switzerland and in the principality of Liechtenstein. Schweiz Arch Tierheilkd. 1999;141:5217.PubMedGoogle Scholar
  8. Hornig  M, Briese  T, Lipkin  WI. Borna disease virus. J Neurovirol. 2003;9:25973.PubMedGoogle Scholar
  9. Dürrwald  R, Kolodziejek  J, Herzog  S, Muluneh  A, Nowotny  N. Epidemiological pattern of classical Borna disease and regional genetic clustering of Borna disease viruses point towards existence of to-date unknown endemic reservoir populations. Microbes Infect. Epub 2006 Jan 6.PubMedGoogle Scholar
  10. Caplazi  P, Ehrensperger  F. Spontaneous Borna disease in sheep and horses: immunophenotyping of inflammatory cells and detection of MHC-I and MHC-II antigen expression in Borna encephalitis lesions. Vet Immunol Immunopathol. 1998;61:20320. DOIPubMedGoogle Scholar
  11. Stitz  L, Bilzer  T, Planz  O. The immunopathogenesis of Borna disease virus infection. Front Biosci. 2002;7:d54155. DOIPubMedGoogle Scholar
  12. De la Torre  JC. Bornavirus and the brain. J Infect Dis. 2002;186:S2417. DOIPubMedGoogle Scholar
  13. Raese  J. "Crocidura leucodon" animal diversity web, University of Michigan Museum of Zoology. 2004 [cited 2006 Feb 27]. Available from http://animaldiversity.ummz.umich.edu/site/accounts/information/Crocidura_leucodon.html
  14. Sauder  C, Staeheli  P. Rat model of Borna disease virus transmission: epidemiological implications. J Virol. 2003;23:1288690. DOIPubMedGoogle Scholar

Main Article

Page created: January 24, 2012
Page updated: January 24, 2012
Page reviewed: January 24, 2012
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external