Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 17, Number 4—April 2011
Research

Genome Sequence of SG33 Strain and Recombination between Wild-Type and Vaccine Myxoma Viruses

Christelle Camus-BouclainvilleComments to Author , Magalie Gretillat, Robert Py, Jacqueline Gelfi, Jean-Luc Guérin, and Stéphane Bertagnoli
Author affiliations: Author affiliations: French National Institute for Agricultural Research, Toulouse, France; and Université de Toulouse, École Nationale Vétérinaire, Toulouse

Main Article

Table

Myxoma virus genes with amino acids discrepancies between Lausanne and SG33 sequences*

ORF Position in genome†
Nucleotide changes or % identity‡ Amino acid changes or % identity§
Lausanne (18) SG33
M005L 6383–4935 6369–4921 A6351G Silent
C6286 R33Q
M006L 7948–6422 7934–6408 G6683A Silent
T6608G E447D
M011L¶ 14125–13628
M011bL 14110–14012 Initiates at M52
A13890G V28A
A13857C V39G
M011aL 14569–14126 G14103A A8V
G14024T C34Stop
M020L# 20531–19197 20518–19181 20379 GAG insertion Addition of L (aa 52)
M030L 30037–29372 30024–29359 T30011C T10A
M031R 30138–31316 30125–31303 C30614T A159V
M034L 36864–33847 36851–33834 T36186C Y227C
M044R 44157–46190 44144–46177 A44593T T146S
A44596G N147D
G44940T K261N
M047R 48288–48962 48275–48949 A48780G T164A
M049R 49312–50604 49299–50591 G49777A M155I
M053R 52380–53159 52367–53146 G53113A D245N
M054R 53183–54178 53170–54165 97% 7 substitutions, 97%
M058R 56201–56953 56188–56940 C56404T A68V
M062R 58406–58879 58393–58866 T58642C I79T
M064R 59631–60239 59617–60222 60131 AGA insertion Addition of E (aa 163)
M069L# 66614–66081 66598–66083 66101 T deletion 6-aa addition
M073R 70698–71279 70682–71263 C70861T A55V
M076R 72702–75206 72686–75190 100% (72686–73782)
95% (73783–75190) 11 substitutions, 98%
M077L 75602–75174 75655–75158 91% 8 substitutions, 94% identity
C75619A
T75620C Stop → C upstream of ATG, potential N-terminal 23 aa addition**
M078R 75608–76327 75592–76311 94% 11 substitutions, 95%
M079R 76327–76980 76311–76964 96% 4 substitutions, 98%
M080R 77017–79374 77001–79358 95% (77001–77639)
99% (77640–79361) 6 substitutions, 99%
M083L 82636–81779 82605–81763 81958–81972 deletion 218 YNVKA 222 deletion
M085R 83302–84078 83271–84047 C83976T A225V
M092L 91923–89965 91892–89934 A90679C S416A
M095L 94089–92971 94058–92940 A93326C
A93328G S255P
M096L 96252–94120 96221–94089 C95947T A103T
M099L 100099–97397 100068–97366 A98212G I630T
M111R 106301–107593 106270–107562 T107143G V281G
M134R 125694–131693 125663–131662 G130985A S1773N
M135R 131699–132232 131668–132201 96% 8 substitutions in second half of protein
M136R 132368–132904 132387–132929 87% KL insertion, 26 substitutions
83%
M137R 132908–133837 132933–133862 85% 48 substitutions, 84%
M138L 134746–133877 134767–133898 84% 53 substitutions, 81%††
M139R 134806–135369 134818–135381 91% 13 substitutions, 93%
M140R 135375–137033 135387–137045 90% 51 substitutions, 90%
M141R 137069–137722 137089–137757 80% 53 substitutions, 9 insertions/ deletions,
76%
M142R 137731–138648 137768–138697 89% A306NITRI (C-terminal)
21 substitutions, 93%
M143R 138665–139366 138701–139402 90% 13 substitutions, 94%
M144R 139411–140310 139452–140345 84% 67 substitutions, EY deletion
77%
M146R 140335–140658 140372–140695 86% 15 substitutions, 85%
M147R 140700–141563 140749–141609 84% 31 substitutions, 89%
M148R 141626–143650 141678–143799 75% 217 substitutions, 67%
M149R 143655–145124 143704–145173 85% 63 substitutions, 87% ‡‡
M150R 145191–146672 145241–146713 83% 96 substitutions, 80% ‡‡
M151R 146684–147682 85% identity on 467 bp 84% identity on aa 1–157, C-terminal 176-aa deletion‡‡
M001R 160190–160969 83% id on 244 bp 87% identity on aa 181–260, N-terminal 180-aa deletion
M151R-M001R§§ 146732–147439

*Boldface indicates genes at the border of SG33 deletion. ORF, open reading frame.
†Stop codon not included.
‡Nucleotide changes with position in Lausanne genome, or identity percentage if too many.
§Amino acid changes with position in Lausanne ORF, or no. changes and identity percentage if too many.
¶ Apparition of a stop codon, leading to the potential translation of 2 polypeptides (M011aL and M011bL) from SG33 transcript.
# Identical to 6918 strain (21).
** Addition not probable in view of promoting region position.
††100% identity to 1,189 bp of MSD strain (17).
‡‡99.6% identity on 1,737 bp with MSW strain (discontinued sequences) (22).
§§ Fusion of 2 partial ORFs as a result of deletion.

Main Article

References
  1. Fenner  F. Portraits of viruses: the poxviruses. Intervirology. 1979;11:13757. DOIPubMedGoogle Scholar
  2. Fenner  F, Fantini  B. Biological control of vertebrate pests. The history of myxomatosis—an experiment in evolution. Wallingford-Oxon (UK): CABI Publishing; 1999.
  3. Silvers  L, Inglis  B, Labudovic  A, Janssens  PA, van Leeuwen  BH, Kerr  PJ. Virulence and pathogenesis of the MSW and MSD strains of Californian myxoma virus in European rabbits with genetic resistance to myxomatosis compared to rabbits with no genetic resistance. Virology. 2006;348:7283. DOIPubMedGoogle Scholar
  4. Bouvier  G. Quelques remarques sur la myxomatose. Bull Off Int Epizoot. 1954;46:767.
  5. Fenner  F, Marshall  I. A comparison of the virulence for European rabbits (Oryctolagus cuniculus) of strains of myxoma virus recovered in the field in Australia, Europe and America. J Hyg (Lond). 1957;55:14991. DOIPubMedGoogle Scholar
  6. Shope  RE. A transmissible tumor-like condition in rabbits. J Exp Med. 1932;56:793802. DOIPubMedGoogle Scholar
  7. Shope  RE. Infectious fibroma of rabbits: III. The serial transmission of virus myxomatosum in cottontail rabbits, and cross-immunity tests with the fibroma virus. J Exp Med. 1936;63:3341. DOIPubMedGoogle Scholar
  8. Saito  JK, McKercher  DG, Castrucci  G. Attenuation of the myxoma virus and use of the living attenuated virus as an immunizing agent for myxomatosis. J Infect Dis. 1964;114:41728. DOIPubMedGoogle Scholar
  9. Jiran  E, Sladká  M, Kunstýr  I. Myxomatosis of rabbits–study of virus modification. Zentralbl Veterinarmed B. 1970;17:41828. DOIPubMedGoogle Scholar
  10. Jacotot  H, Virat  B, Reculard  P, Vallée  A, Le Bouquin  MJ, Boutry  JM, Study of an attenuated strain of infectious myxoma virus obtained by passage in cell cultures (MacKercher and Saito, 1964) [in French] [PMID 6055855]. Ann Inst Pasteur (Paris). 1967;113:22137.PubMedGoogle Scholar
  11. Cancellotti  F. Caratteristiche dello stipite vaccinale Borghi. Rivista di Coniglicoltura. 1985;3:2431.
  12. Górski  J, Mizak  B, Chrobocińska  M. Control of rabbit myxomatosis in Poland. Rev Sci Tech. 1994;13:86979.PubMedGoogle Scholar
  13. Saurat  P, Gilbert  Y, Gagnière  J. Study of a modified myxoma virus strain [in French]. Rev Med Vet (Toulouse). 1978;129:41551.
  14. Guérin  J, Petit  F, Van Es  A, Gelfi  J, Py  R, Bertagnoli  S, Molecular analysis of myxomatosis vaccine strains SG33 and Poxlap: prophylactic and epidemiological implications [in French]. Dans: 7èmes journées de la Recherche Cunicole française. Lyon: 1998. p. 53–56.
  15. Petit  F, Boucraut-Baralon  C, Py  R, Bertagnoli  S. Analysis of myxoma virus genome using pulsed-field gel electrophoresis. Vet Microbiol. 1996;50(1–296405880):27–32.
  16. Cavadini  P, Botti  G, Barbieri  I, Lavazza  A, Capucci  L. Molecular characterization of SG33 and Borghi vaccines used against myxomatosis. Vaccine. 2010;28:541420. DOIPubMedGoogle Scholar
  17. Jackson  RJ, Hall  D, Kerr  P. Myxoma virus encodes an alpha2,3-sialyltransferase that enhances virulence. J Virol. 1999;73:237684.PubMedGoogle Scholar
  18. Cameron  C, Hota-Mitchell  S, Chen  L, Barrett  J, Cao  JX, Macaulay  C, The complete DNA sequence of myxoma virus. Virology. 1999;264:298318. DOIPubMedGoogle Scholar
  19. Altschul  SF, Gish  W, Miller  W, Myers  EW, Lipman  DJ. Basic local alignment search tool. J Mol Biol. 1990;215:40310.PubMedGoogle Scholar
  20. Marck  C. ‘DNA Strider’: a ‘C’ program for the fast analysis of DNA and protein sequences on the Apple Macintosh family of computers. Nucleic Acids Res. 1988;16:182936. DOIPubMedGoogle Scholar
  21. Morales  M, Ramírez  MA, Cano  MJ, Párraga  M, Castilla  J, Pérez-Ordoyo  LI, Genome comparison of a nonpathogenic myxoma virus field strain with its ancestor, the virulent Lausanne strain. J Virol. 2009;83:2397403. DOIPubMedGoogle Scholar
  22. Labudovic  A, Perkins  H, van Leeuwen  B, Kerr  P. Sequence mapping of the Californian MSW strain of myxoma virus. Arch Virol. 2004;149:55370. DOIPubMedGoogle Scholar
  23. Petit  F, Bertagnoli  S, Gelfi  J, Fassy  F, Boucraut-Baralon  C, Milon  A. Characterization of a myxoma virus–encoded serpin-like protein with activity against interleukin-1 beta-converting enzyme. J Virol. 1996;70:58606.PubMedGoogle Scholar
  24. Messud-Petit  F, Gelfi  J, Delverdier  M, Amardeilh  MF, Py  R, Sutter  G, Serp2, an inhibitor of the interleukin-1beta–converting enzyme, is critical in the pathobiology of myxoma virus. J Virol. 1998;72:78309.PubMedGoogle Scholar
  25. Lalani  AS, Masters  J, Graham  K, Liu  L, Lucas  A, McFadden  G. Role of the myxoma virus soluble CC-chemokine inhibitor glycoprotein, M-T1, during myxoma virus pathogenesis. Virology. 1999;256:23345. DOIPubMedGoogle Scholar
  26. Turner  PC, Sancho  M, Thoennes  S, Caputo  A, Bleackley  R, Moyer  R. Myxoma virus Serp2 is a weak inhibitor of granzyme B and interleukin-1 beta-converting enzyme in vitro and unlike CrmA cannot block apoptosis in cowpox virus–infected cells. J Virol. 1999;73:6394404.PubMedGoogle Scholar
  27. Graham  KA, Lalani  A, Macen  J, Ness  T, Barry  M, Liu  L, The T1/35kDa family of poxvirus-secreted proteins bind chemokines and modulate leukocyte influx into virus-infected tissues. Virology. 1997;229:1224. DOIPubMedGoogle Scholar
  28. Guerin  JL, Gelfi  J, Camus  C, Delverdier  M, Whisstock  JC, Amardeihl  MF, Characterization and functional analysis of Serp3: a novel myxoma virus–encoded serpin involved in virulence. J Gen Virol. 2001;82:140717.PubMedGoogle Scholar
  29. Guerin  JL, Gelfi  J, Boullier  S, Delverdier  M, Bellanger  FA, Bertagnoli  S, Myxoma virus leukemia-associated protein is responsible for major histocompatibility complex class I and Fas-CD95 down-regulation and defines scrapins, a new group of surface cellular receptor abductor proteins. J Virol. 2002;76:291223. DOIPubMedGoogle Scholar
  30. Gedey  R, Jin  X, Hinthong  O, Shisler  JL. Poxviral regulation of the host NF-κB response: the vaccinia virus M2L protein inhibits induction of NF-κB activation via an ERK2 pathway in virus-infected human embryonic kidney cells. J Virol. 2006;80:867685. DOIPubMedGoogle Scholar
  31. Ramelot  TA, Cort  JR, Yee  AA, Liu  F, Goshe  MB, Edwards  AM, Myxoma virus immunomodulatory protein M156R is a structural mimic of eukaryotic translation initiation factor eIF2alpha. J Mol Biol. 2002;322:94354. DOIPubMedGoogle Scholar
  32. Mossman  K, Ostergaard  H, Upton  C, McFadden  G. Myxoma virus and Shope fibroma virus encode dual-specificity tyrosine/serine phosphatases which are essential for virus viability. Virology. 1995;206:57282. DOIPubMedGoogle Scholar
  33. Everett  H, Barry  M, Lee  SF, Sun  X, Graham  K, Stone  J, M11L: a novel mitochondria-localized protein of myxoma virus that blocks apoptosis of infected leukocytes. J Exp Med. 2000;191:148798. DOIPubMedGoogle Scholar
  34. Kozak  M. An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 1987;15:812548. DOIPubMedGoogle Scholar
  35. McKercher  DG, Saito  JK. An attenuated live virus vaccine for myxomatosis. Nature. 1964;202:9334. DOIPubMedGoogle Scholar
  36. Block  W, Upton  C, McFadden  G. Tumorigenic poxviruses: genomic organization of malignant rabbit virus, a recombinant between Shope fibroma virus and myxoma virus. Virology. 1985;140:11324. DOIPubMedGoogle Scholar
  37. Upton  C, Macen  JL, Maranchuk  RA, DeLange  AM, McFadden  G. Tumorigenic poxviruses: fine analysis of the recombination junctions in malignant rabbit fibroma virus, a recombinant between Shope fibroma virus and myxoma virus. Virology. 1988;166:22939. DOIPubMedGoogle Scholar
  38. Strayer  DS, Cabirac  G, Sell  S, Leibowitz  JL. Malignant rabbit fibroma virus: observations on the culture and histopathologic characteristics of a new virus-induced rabbit tumor. J Natl Cancer Inst. 1983;71:91104.PubMedGoogle Scholar
  39. Gershon  PD, Kitching  RP, Hammond  JM, Black  DN. Poxvirus genetic recombination during natural virus transmission. J Gen Virol. 1989;70:4859. DOIPubMedGoogle Scholar
  40. Hansen  H, Okeke  MI, Nilssen  O, Traavik  T. Recombinant viruses obtained from co-infection in vitro with a live vaccinia-vectored influenza vaccine and a naturally occurring cowpox virus display different plaque phenotypes and loss of the transgene. Vaccine. 2004;23:499506. DOIPubMedGoogle Scholar

Main Article

Page created: July 25, 2011
Page updated: July 25, 2011
Page reviewed: July 25, 2011
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external