Volume 8, Number 12—December 2002
Research
Antimicrobial Resistance of Escherichia coli O26, O103, O111, O128, and O145 from Animals and Humans
Table 2
Class or antimicrobial | Dilution range tested (µg/mL) | NCCLS resistance breakpoint (µg/mL) |
---|---|---|
Cephalosporins | ||
Cefoxitin | 1–32 | 32 |
Ceftiofur | 1–16 | 8b |
Ceftriaxone | 0.06–64 | 64 |
Cephalothin | 1–32 | 32 |
Penicillins | ||
Amoxicillin-clavulanic acid | 0.25/0.12–32/16 | 32/16 |
Ampicillin | 0.25–32 | 32 |
Sulfonamides and potentiated sulfonamides | ||
Sulfamethoxazole | 32–512 | 512 |
Trimethoprim-sulfamethoxazole | 0.06/1.19–4/76 | 4/76 |
Phenicols | ||
Chloramphenicol | 1–32 | 32 |
Quinolones and fluoroquinolones | ||
Ciprofloxacin | 0.004–8 | 4 |
Nalidixic acid | 2–256 | 32 |
Aminoglycosides | ||
Gentamicin | 0.25–16 | 16 |
Streptomycin | 1–256 | 64b |
Tetracycline | 1–16 | 16 |
aNCCLS, National Committee for Clinical Laboratory Standards. Antimicrobial susceptibility testing was performed according to NCCLS standards (20). Escherichia coli (ATCC 25922 and ATCC 35218), Enterococcus faecalis (ATCC 51299), and Pseudomonas aeurigonosa (ATCC 27853) were used as quality controls.
bNCCLS breakpoint not established for E. coli.
References
- Bonten M, Stobberingh E, Philips J, Houben A. High prevalence of antibiotic resistant Escherichia coli in faecal samples of students in the south-east of The Netherlands. J Antimicrob Chemother. 1990;26:585–92. DOIPubMedGoogle Scholar
- Conway P, Macfarlane G. Microbial ecology of the human large intestine. In: Gibson G, editor. London: CRC Press; 1995. p. 1–24.
- Falagas M, Gorbach S. Practice guidelines: urinary tract infections. Infect Dis Clin Pract. 1995;4:241–57. DOIGoogle Scholar
- Klein JO, Feigin RD, McCracken GH Jr. Report of the task force on diagnosis and management of meningitis. [Pubmed]. Pediatrics. 1986;78:959–82.PubMedGoogle Scholar
- Thielman NM, Guerrant RL. Escherichia coli. In: Yu VL, Merigan Jr TC, Barriere SL, editors. Baltimore: The Williams & Wilkins Company: 1999. p. 188–200.
- Griffin PM. Escherichia coli O157:H7 and other enterohemorrhagic Escherichia coli. In: Blaser MJ, Smith PD, Ravdin JI, Greenberg HB, Guerrant RL, editors. New York: Raven Press, Ltd.: 1995. p. 739–61.
- Paton JC, Paton AW. Pathogenesis and diagnosis of Shiga toxin–producing Escherichia coli infections. Clin Microbiol Rev. 1998;11:450–79.PubMedGoogle Scholar
- Galland JC, Hyatt DR, Crupper SS, Acheson DW. Prevalence, antibiotic susceptibility, and diversity of Escherichia coli O157:H7 isolates from a longitudinal study of beef cattle feedlots. Appl Environ Microbiol. 2001;67:1619–27. DOIPubMedGoogle Scholar
- Meng J, Zhao S, Doyle MP, Joseph SW. Antibiotic resistance of Escherichia coli O157:H7 and O157:NM isolated from animals, food, and humans. J Food Prot. 1998;61:1511–4.PubMedGoogle Scholar
- Schroeder CM, Zhao C, DebRoy C, Torcolini J, Zhao S, White DG, Antimicrobial resistance of Escherichia coli O157 isolated from humans, cattle, swine, and food. Appl Environ Microbiol. 2002;68:576–81. DOIPubMedGoogle Scholar
- Stephan R, Schumacher S. Resistance patterns of non-O157 Shiga toxin-producing Escherichia coli (STEC) strains isolated from animals, food and asymptomatic human carriers in Switzerland. Lett Appl Microbiol. 2001;32:114–7. DOIPubMedGoogle Scholar
- Teshager T, Herrero IA, Porrero MC, Garde J, Moreno MA, Dominguez L. Surveillance of antimicrobial resistance in Escherichia coli strains isolated from pigs at Spanish slaughterhouses. Int J Antimicrob Agents. 2000;15:137–42. DOIPubMedGoogle Scholar
- van Den Bogaard AE, London N, Driessen C, Stobberingh EE. Antibiotic resistance of faecal Escherichia coli in poultry, poultry farmers and poultry slaughterers. J Antimicrob Chemother. 2001;47:763–71. DOIPubMedGoogle Scholar
- Bettelheim KA, Bennett-Wood V, Lightfoot D, Wright PJ, Marshall JA. Simultaneous isolation of verotoxin-producing strains of Escherichia coli O128:H2 and viruses in gastroenteritis outbreaks. Comp Immunol Microbiol Infect Dis. 2001;24:135–42. DOIPubMedGoogle Scholar
- Giammanco A, Maggio M, Giammanco G, Morelli R, Minelli F, Scheutz F, Characteristics of Escherichia coli strains belonging to enteropathogenic E. coli serogroups isolated in Italy from children with diarrhea. J Clin Microbiol. 1996;34:689–94.PubMedGoogle Scholar
- Ludwig K, Bitzan M, Zimmermann S, Kloth M, Ruder H, Muller-Wiefel DE. Immune response to non-O157 Vero toxin-producing Escherichia coli in patients with hemolytic uremic syndrome. J Infect Dis. 1996;174:1028–39. DOIPubMedGoogle Scholar
- Russmann H, Kothe E, Schmidt H, Franke S, Harmsen D, Caprioli A, Genotyping of Shiga-like toxin genes in non-O157 Escherichia coli strains associated with haemolytic uraemic syndrome. J Med Microbiol. 1995;42:404–10. DOIPubMedGoogle Scholar
- Scotland SM, Willshaw GA, Smith HR, Said B, Stokes N, Rowe B. Virulence properties of Escherichia coli strains belonging to serogroups O26, O55, O111 and O128 isolated in the United Kingdom in 1991 from patients with diarrhoea. Epidemiol Infect. 1993;111:429–38. DOIPubMedGoogle Scholar
- National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial susceptibility testing - tenth informational supplement. M100-S11. Wayne (PA): The Committee; 2001.
- National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals; approved standard. 2nd edition. M31-A2. Wayne (PA): The Committee; 2002.
- Wittwer CT, Reed GB, Ririe KM. Rapid cycle DNA amplification. In: Mullis KB, Ferre F, Gibbs RA, editors. Boston: Birkhauser; 1994.
- Witham PK, Yamashiro CT, Livak KJ, Batt CA. A PCR-based assay for the detection of Escherichia coli Shiga-like toxin genes in ground beef. Appl Environ Microbiol. 1996;62:1347–53.PubMedGoogle Scholar
- Paton AW, Paton JC. Detection and characterization of Shiga toxigenic Escherichia coli by using multiplex PCR assays for stx1, stx2, eaeA, enterohemorrhagic E. coli hlyA, rfbO111, and rfbO157. J Clin Microbiol. 1998;36:598–602.PubMedGoogle Scholar
- Gannon VP, Rashed M, King RK, Thomas EJ. Detection and characterization of the eae gene of Shiga-like toxin-producing Escherichia coli using polymerase chain reaction. J Clin Microbiol. 1993;31:1268–74.PubMedGoogle Scholar
- Fagan PK, Hornitzky MA, Bettelheim KA, Djordjevic SP. Detection of shiga-like toxin (stx1 and stx2), intimin (eaeA), and enterohemorrhagic Escherichia coli (EHEC) hemolysin (EHEC hlyA) genes in animal feces by multiplex PCR. Appl Environ Microbiol. 1999;65:868–72.PubMedGoogle Scholar
- Threlfall EJ, Ward LR, Frost JA, Willshaw GA. The emergence and spread of antibiotic resistance in food-borne bacteria. Int J Food Microbiol. 2000;62:1–5. DOIPubMedGoogle Scholar
- Zhao S, White DG, Ge B, Ayers S, Friedman S, English L, Identification and characterization of integron-mediated antibiotic resistance among Shiga toxin–producing Escherichia coli isolates. Appl Environ Microbiol. 2001;67:1558–64. DOIPubMedGoogle Scholar
- Hornish RE, Kotarski SF. Cephalosporins in veterinary medicine ceftiofur use in food animals. Curr Top Med Chem. 2002;2:717–31. DOIPubMedGoogle Scholar
- Winokur PL, Vonstein DL, Hoffman LJ, Uhlenhopp EK, Doern GV. Evidence for transfer of CMY-2 AmpC beta-lactamase plasmids between Escherichia coli and Salmonella isolates from food animals and humans. Antimicrob Agents Chemother. 2001;45:2716–22. DOIPubMedGoogle Scholar
- Fey PD, Safranek TJ, Rupp ME, Dunne EF, Ribot E, Iwen PC, Ceftriaxone-resistant salmonella infection acquired by a child from cattle. N Engl J Med. 2000;342:1242–9. DOIPubMedGoogle Scholar
- Hofacre CL, de Cotret AR, Maurer JJ, Garritty A, Thayer SG. Presence of fluoroquinolone-resistant coliforms in poultry litter. Avian Dis. 2000;44:963–7. DOIPubMedGoogle Scholar
- Giraud E, Leroy-Setrin S, Flaujac G, Cloeckaert A, Dho-Moulin M, Chaslus-Dancla E. Characterization of high-level fluoroquinolone resistance in Escherichia coli O78:K80 isolated from turkeys. J Antimicrob Chemother. 2001;47:341–3. DOIPubMedGoogle Scholar
- Zhao T, Doyle MP, Shere J, Garber L. Prevalence of enterohemorrhagic Escherichia coli O157:H7 in a survey of dairy herds. Appl Environ Microbiol. 1995;61:1290–3.PubMedGoogle Scholar
- Jones ME, Peters E, Weersink AM, Fluit A, Verhoef J. Widespread occurrence of integrons causing multiple antibiotic resistance in bacteria. Lancet. 1997;349:1742–3. DOIPubMedGoogle Scholar
Page created: April 20, 2012
Page updated: April 20, 2012
Page reviewed: April 20, 2012
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.