Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 13, Number 11—November 2007
Research

Canonical Insertion-Deletion Markers for Rapid DNA Typing of Francisella tularensis

Pär Larsson*†, Kerstin Svensson*†, Linda Karlsson*, Dimitri Guala*, Malin Granberg*, Mats Forsman*, and Anders Johansson*†Comments to Author 
Author affiliations: *Swedish Defence Research Agency, Umeå, Sweden; †Umeå University, Umeå, Sweden;

Main Article

Figure 1

Locations of 38 insertion-deletion and 25 multilocus variable-number tandem repeat analysis (MLVA) markers on the physical genome map of Francisella tularensis subsp. tularensis strain SCHU S4. Positions are given with reference to the predicted origin of replication set at position 0. Indel and MLVA marker locations are depicted by wedges on the outside and inside of the circle, respectively. Two asterisks indicate the duplicate occurrence of the MLVA loci Ft-M14 at 2 different locations because it is part of a large sized genome duplication (1,25).

Figure 1. Locations of 38 insertion-deletion and 25 multilocus variable-number tandem repeat analysis (MLVA) markers on the physical genome map of Francisella tularensis subsp. tularensis strain SCHU S4. Positions are given with reference to the predicted origin of replication set at position 0. Indel and MLVA marker locations are depicted by wedges on the outside and inside of the circle, respectively. Two asterisks indicate the duplicate occurrence of the MLVA loci Ft-M14 at 2 different locations because it is part of a large sized genome duplication (1,25).

Main Article

References
  1. Johansson  A, Forsman  M, Sjöstedt  A. The development of tools for diagnosis of tularemia and typing of Francisella tularensis. APMIS. 2004;112:898907. DOIPubMedGoogle Scholar
  2. Sjöstedt  A. Genus I. Francisella Dorofe’ev 1947, 176AL. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM, editors. Bergey’s manual of systematic bacteriology, 2nd ed. New York: Springer; 2005. p. 200–10.
  3. Olsufjev  NG, Meshcheryakova  IS. Subspecific taxonomy of Francisella-tularensis. Int J Syst Bacteriol. 1983;33:8724. DOIGoogle Scholar
  4. Dennis  DT, Inglesby  TV, Henderson  DA, Bartlett  JG, Ascher  MS, Eitzen  E, Tularemia as a biological weapon: medical and public health management. JAMA. 2001;285:276373. DOIPubMedGoogle Scholar
  5. Farlow  J, Wagner  DM, Dukerich  M, Stanley  M, Chu  M, Kubota  K, Francisella tularensis in the United States. Emerg Infect Dis. 2005;11:183541.PubMedGoogle Scholar
  6. Johansson  A, Farlow  J, Larsson  P, Dukerich  M, Chambers  E, Byström  M, Worldwide genetic relationships among Francisella tularensis isolates determined by multiple-locus variable-number tandem repeat analysis. J Bacteriol. 2004;186:580818. DOIPubMedGoogle Scholar
  7. Staples  JE, Kubota  KA, Chalcraft  LG, Mead  PS, Petersen  JM. Epidemiologic and molecular analysis of human tularemia, United States, 1964–2004. Emerg Infect Dis. 2006;12:11138.PubMedGoogle Scholar
  8. Rotz  LD, Khan  AS, Lillibridge  SR, Ostroff  SM, Hughes  JM. Public health assessment of potential biological terrorism agents. Emerg Infect Dis. 2002;8:22530. DOIPubMedGoogle Scholar
  9. Burke  DS. Immunization against tularemia: analysis of the effectiveness of live Francisella tularensis vaccine in prevention of laboratory-acquired tularemia. J Infect Dis. 1977;135:5560.PubMedGoogle Scholar
  10. Broekhuijsen  M, Larsson  P, Johansson  A, Byström  M, Eriksson  U, Larsson  E, Genome-wide DNA microarray analysis of Francisella tularensis strains demonstrates extensive genetic conservation within the species but identifies regions that are unique to the highly virulent F. tularensis subsp. tularensis. J Clin Microbiol. 2003;41:292431. DOIPubMedGoogle Scholar
  11. Kugeler  KJ, Pappert  R, Zhou  Y, Petersen  JM. Real-time PCR for Francisella tularensis types A and B. Emerg Infect Dis. 2006;12:1799801.PubMedGoogle Scholar
  12. Samrakandi  MM, Zhang  C, Zhang  M, Nietfeldt  J, Kim  J, Iwen  PC, Genome diversity among regional populations of Francisella tularensis subspecies tularensis and Francisella tularensis subspecies holarctica isolated from the US. FEMS Microbiol Lett. 2004;237:917. DOIPubMedGoogle Scholar
  13. Tomaso  H, Scholz  HC, Neubauer  H, Al Dahouk  S, Seibold  E, Landt  O, Real-time PCR using hybridization probes for the rapid and specific identification of Francisella tularensis subspecies tularensis. Mol Cell Probes. 2007;21:126. DOIPubMedGoogle Scholar
  14. Gerner-Smidt  P, Hise  K, Kincaid  J, Hunter  S, Rolando  S, Hyytia-Trees  E, PulseNet USA: a five-year update. Foodborne Pathog Dis. 2006;3:919. DOIPubMedGoogle Scholar
  15. van Belkum  A, van Leeuwen  W, Kaufmann  ME, Cookson  B, Forey  F, Etienne  J, Assessment of resolution and intercenter reproducibility of results of genotyping Staphylococcus aureus by pulsed-field gel electrophoresis of SmaI macrorestriction fragments: a multicenter study. J Clin Microbiol. 1998;36:16539.PubMedGoogle Scholar
  16. Garcia Del Blanco  N, Dobson  ME, Vela  AI, De La Puente  VA, Gutierrez  CB, Hadfield  TL, Genotyping of Francisella tularensis strains by pulsed-field gel electrophoresis, amplified fragment length polymorphism fingerprinting, and 16S rRNA gene sequencing. J Clin Microbiol. 2002;40:296472. DOIPubMedGoogle Scholar
  17. Barry  MA. Report of pneumonic tularemia in three Boston University researchers, November 2004–March 2005. Boston: Communicable Disease Control, Boston Public Health Commission; 2005 [cited 10 Sep 2007]. Available from http://www.bphc.org/reports/pdfs/report_202
  18. Farlow  J, Smith  KL, Wong  J, Abrams  M, Lytle  M, Keim  P. Francisella tularensis strain typing using multiple-locus, variable-number tandem repeat analysis. J Clin Microbiol. 2001;39:318692. DOIPubMedGoogle Scholar
  19. Johansson  A, Göransson  I, Larsson  P, Sjöstedt  A. Extensive allelic variation among Francisella tularensis strains in a short-sequence tandem repeat region. J Clin Microbiol. 2001;39:31406. DOIPubMedGoogle Scholar
  20. Vogler  AJ, Keys  C, Nemoto  Y, Colman  RE, Jay  Z, Keim  P. Effect of repeat copy number on variable-number tandem repeat mutations in Escherichia coli O157:H7. J Bacteriol. 2006;188:425363. DOIPubMedGoogle Scholar
  21. Vogler  AJ, Keys  CE, Allender  C, Bailey  I, Girard  J, Pearson  T, Mutations, mutation rates, and evolution at the hypervariable VNTR loci of Yersinia pestis. Mutat Res. 2007;616:14558. DOIPubMedGoogle Scholar
  22. Bayliss  CD, Field  D, Moxon  ER. The simple sequence contingency loci of Haemophilus influenzae and Neisseria meningitidis. J Clin Invest. 2001;107:65762. DOIPubMedGoogle Scholar
  23. Field  D, Magnasco  MO, Moxon  ER, Metzgar  D, Tanaka  MM, Wills  C, Contingency loci, mutator alleles, and their interactions. Synergistic strategies for microbial evolution and adaptation in pathogenesis. Ann N Y Acad Sci. 1999;870:37882. DOIPubMedGoogle Scholar
  24. Keim  P, Van Ert  MN, Pearson  T, Vogler  AJ, Huynh  LY, Wagner  DM. Anthrax molecular epidemiology and forensics: using the appropriate marker for different evolutionary scales. Infect Genet Evol. 2004;4:20513. DOIPubMedGoogle Scholar
  25. Sandström  G, Tärnvik  A, Wolf-Watz  H, Löfgren  S. Antigen from Francisella tularensis: nonidentity between determinants participating in cell-mediated and humoral reactions. Infect Immun. 1984;45:1016.PubMedGoogle Scholar
  26. Sjöstedt  A, Eriksson  U, Berglund  L, Tärnvik  A. Detection of Francisella tularensis in ulcers of patients with tularemia by PCR. J Clin Microbiol. 1997;35:10458.PubMedGoogle Scholar
  27. Darling  AC, Mau  B, Blattner  FR, Perna  NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004;14:1394403. DOIPubMedGoogle Scholar
  28. Rozen  S, Skaletsky  H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol. 2000;132:36586.PubMedGoogle Scholar
  29. Larsson  P, Oyston  PC, Chain  P, Chu  MC, Duffield  M, Fuxelius  HH, The complete genome sequence of Francisella tularensis, the causative agent of tularemia. Nat Genet. 2005;37:1539. DOIPubMedGoogle Scholar
  30. Hunter  PR, Gaston  MA. Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity. J Clin Microbiol. 1988;26:24656.PubMedGoogle Scholar
  31. Hamming  R. Error-detecting and error-correcting codes. Bell Syst Tech J. 1950;29:14760.
  32. Swofford  D. PAUP*: phylogenetic analysis using parsimony (*and other methods), version 4. Sunderland (MA): Sinauer Associates; 2003.
  33. R Development Core Team. R: A language and environment for statistical computing, Vienna, Austria, 2007 [cited 2007 Sep 10]. Available from: http://www.r-project.org
  34. Petersen  JM, Schriefer  ME. Tularemia: emergence/re-emergence. Vet Res. 2005;36:45567. DOIPubMedGoogle Scholar
  35. Graur  D, Li  W-H. Fundamentals of molecular evolution. 2nd ed. Sunderland (MA): Sinauer Associates; 2000.
  36. Alland  D, Whittam  TS, Murray  MB, Cave  MD, Hazbon  MH, Dix  K, Modeling bacterial evolution with comparative-genome-based marker systems: application to Mycobacterium tuberculosis evolution and pathogenesis. J Bacteriol. 2003;185:33929. DOIPubMedGoogle Scholar
  37. Pearson  T, Busch  JD, Ravel  J, Read  TD, Rhoton  SD, U’Ren JM, et al. Phylogenetic discovery bias in Bacillus anthracis using single-nucleotide polymorphisms from whole-genome sequencing. Proc Natl Acad Sci U S A. 2004;101:1353641. DOIPubMedGoogle Scholar

Main Article

Page created: July 06, 2010
Page updated: July 06, 2010
Page reviewed: July 06, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external