Volume 2, Number 4—October 1996
Synopsis
New Vaccines for the Prevention of Pneumococcal Infections
Table 2
Geometric Mean of the Anti-PNC PS (mg/ml) |
|||||||||
Type 6B |
Type 14 |
Type 19F |
Type 23F |
||||||
Vaccine |
Pre |
Post |
Pre |
Post |
Pre |
Post |
Pre |
Post |
Ref. |
PncOMPC | 0.17 | 1.30 | 0.42 | 8.27 | 0.34 | 9.85 | 0.28 | 1.90 | (50) |
PncCRM | 0.25 | 0.50 | 0.30 | 2.49 | 0.46 | 1.13 | 0.18 | 0.83 | (52) |
PncT01-4 | 0.25 | 0.89 | 0.24 | 2.84 | 0.36 | 3.73 | 0.18 | 0.82 | (56) |
PncT01-8 | 0.20 | 1.28 | 0.30 | 2.56 | 0.56 | 4.23 | 0.22 | 1.03 | (29) |
PncD03-4 | 0.26 | 0.88 | 0.44 | 2.20 | 0.43 | 5.29 | 0.21 | 0.67 | (56) |
PncD03-8 |
0.17 |
1.44 |
0.31 |
4.62 |
0.37 |
4.94 |
0.24 |
1.07 |
(29) |
PncOMP = tetravalent conjugate vaccine with a meningococcal outer membrane protein complex as a carrier PncCRM = pentavalent oligosaccharide conjugate vaccine with CRM197 protein as a carrier PncT01-4 = tetravalent conjugate vaccine with tetanus toxoid carrier; 1 mg of each of four polysaccharides PncT01-8 = tetravalent conjugate vaccine with tetanus toxoid carrier; 1 mg of each of four polysaccharides PncD03-4 = tetravalent conjugate vaccine with diphtheria toxoid carrier; 3mg of each of four polysaccharides PncD03-8 = octavalent conjugate vaccine with diphtheria toxoid carrier; 3mg of each of four polysaccharides *Serum samples are taken before immunization (pre) and at 7 months (post). The data have been gathered from separate studies done in the same population. |
References
- Alho OP. Acute otitis media in infancy: Occurrence and risk factors. Oulu, Finland: University of Oulu, 1990.
- Luotonen J, Herva E, Karma P, Timonen M, Leinonen M, Mäkelä PH. The bacteriology of acute otitis media in children with special reference to Streptococcus pneumoniae as studied by bacteriological and antigen detection methods. Scand J Infect Dis. 1981;13:177–83.PubMedGoogle Scholar
- Stansfield SK. Acute respiratory infections in the developing world: strategies for prevention, treatment and control. Pediatr Infect Dis J. 1987;6:622–9. DOIPubMedGoogle Scholar
- Eskola J, Takala AK, Kela E, Pekkanen E, Kalliokoski R, Leinonen M. Epidemiology of invasive pneumococcal infections in children in Finland; A five year prospective study with special implications for prevention. JAMA. 1992;268:3323–7. DOIPubMedGoogle Scholar
- Dagan R, Englehard D, Piccard E; Israeli Pediatric Bacteremia and Meningitis Group. Epidemiology of invasive childhood pneumococcal infections in Israel. JAMA. 1992;268:3328–32. DOIPubMedGoogle Scholar
- Bennett NM, Buffington J, LaForce FM. Pneumococcal bacteremia in Monroe County, New York. Am J Public Health. 1992;82:1513–6. DOIPubMedGoogle Scholar
- Advisory Committee on Immunization Practices. Prevention of pneumococcal disease. Recommen-dations of the Advisory Committee on Immunization Practices. MMWR. 1996. In press.
- Klugman KP. Pneumococcal resistance to antibiotics. Clin Microbiol Rev. 1990;3:171–96.PubMedGoogle Scholar
- Sniadack DH, Schwartz B, Lipman H, Bogaerts J, Butler JC, Dagan R, Potential interventions for the prevention of childhood pneumonia: geographic and temporal differences in serotype and serogroup distribution of on sterile site pneumococcal isolates from children- implications for vaccine strategies. Pediatr Infect Dis J. 1995;14:503–10. DOIPubMedGoogle Scholar
- Shapiro ED, Berg AT, Austrian R, Schroeder D, Parcells V, Margolis A, The protective efficacy of polyvalent pneumococcal polysaccharide vaccine. N Engl J Med. 1991;325:1453.PubMedGoogle Scholar
- Butler JC, Breiman RF, Campbell JF, Lipman HB, Broome CV, Facklam RR. Pneumococcal poly-saccharide vaccine efficacy. JAMA. 1993;270:1826–31. DOIPubMedGoogle Scholar
- Riley ID, Lehmann D, Alpers MP, Marshall TF, Gratten H, Smith D, Pneumococcal vaccine prevents death from acute lower respiratory tract infections in Papua New Guinean children. Lancet. 1986;2:877–81. DOIPubMedGoogle Scholar
- Mäkelä PH, Sibakov M, Herva E, Henricksen J. Pneumococcal vaccine and otitis media. Lancet. 1980;2:547–51. DOIPubMedGoogle Scholar
- Käyhty H, Eskola J, Peltola H, Stout M, Samuelson JS, Gordon LK. Immunogenicity in infants of a vaccine composed of Haemophilus influenzae type b capsular polysaccharide mixed with DPT or conjugated to diphtheria toxoid. J Infect Dis. 1987;155:100–6.PubMedGoogle Scholar
- Sarvas H, Rautonen N, Sipinen S, Mäkelä O. IgG subclasses of pneumococcal antibodieseffect of allotype G2m(n). Scand J Immunol. 1989;29:229–37. DOIPubMedGoogle Scholar
- Mäkelä O, Mattila P, Rautonen N, Seppälä N, Seppälä I, Eskola J, Isotype concentrations of human antibodies to Haemophilus influenzae type b polysaccharide (Hib) in young adults immunized with the polysaccharide as such or conjugated to a protein (diphtheria toxoid). J Immunol. 1987;139:1999–2004.PubMedGoogle Scholar
- Lock RA, Paton JC, Hansman D. Comparative efficacy of pneumococcal neuraminidase and pneumo-lysin as immunogens protective against Streptococcus pneumoniae. Microb Pathog. 1988;5:461–7. DOIPubMedGoogle Scholar
- Tart RC, McDaniel LS, Ralph BA, Briles DE. Truncated Streptococcus pneumoniae PspA molecules elicit cross-protective immunity against pneumococcal challenge in mice. J Infect Dis. 1996;173:380–6.PubMedGoogle Scholar
- Sampson JS, O'Connor SP, Stinson AR, Tharpe JA, Russell H. Cloning and nucleotide sequence analysis of psaA, the Streptococcus pneumoniae gene encoding a 37-kilodalton protein homologous to previously reported Streptococcus sp. adhesins. Infect Immun. 1994;62:319–24.PubMedGoogle Scholar
- Alexander JE, Lock RA, Peeters C, Poolman JT, Andrew PW, Mitchell TJ, . Immunization of mice with pneumolysin toxoid confers a significant degree of protection against at least nine serotypes of Strep-tococcus pneumoniae. Infect Immun. 1994;62:5683–8.PubMedGoogle Scholar
- Paton JC, Lock RA, Hansman DJ. Effect of immunization with pneumolysin on survival time of mice challenged with Streptococcus pneumoniae. Infect Immun. 1983;40:548–52.PubMedGoogle Scholar
- McDaneiel LS, Sheffield JS, Delucchi P, Briles DE. PspA, a surface protein of Streptococcus pneumoniae, is capable of eliciting protection against pneumococci of more than one capsular type. Infect Immun. 1991;59:222–8.PubMedGoogle Scholar
- Goebel W, Avery OT. Chemo-immunological studies conjugated carbohydrate proteins. I. The synthesis of p-aminophenol ß-glucoside, p-aminophenol ß-galactoside and their coupling with serum globulin. J Exp Med. 1929;50:521–33. DOIPubMedGoogle Scholar
- Mäkelä PH, Eskola J, Käyhty H, Takala A. Vaccines against Haemophilus influenzae type b. In: Ala-Aldeen D, Hormaeche C, editors. Molecular and Clinical Aspects of Bacterial Vaccine Development. Chichester: John Wiley & Sons, Ltd., 1995:41-91.
- Eskola J, Käyhty H, Takala AK, Peltola H, Rönnberg P-R, Kela E, A randomized, prospective field trial of a conjugate vaccine in the protection of infants and young children against invasive Haemophilus influenzae type b disease. N Engl J Med. 1990;323:1381–7.PubMedGoogle Scholar
- Barbour ML, Booy R, Crook DW, Griffiths H, Chapel HM, Moxon ER, Haemophilus influenzae type b carriage and immunity four years after receiving the Haemophilus influenzae oligosaccharide-CRM197 (HbOC) conjugate vaccine. Pediatr Infect Dis J. 1993;12:478–84. DOIPubMedGoogle Scholar
- Anderson EL, Kennedy DJ, Geldmacher KM, Donnelly J, Mendelman PM. Immunogenicity of heptavalent pneumococcal conjugate vaccine in infants. Pediatrics. 1996;128:649–53. DOIGoogle Scholar
- Hogerman D, Kimura A, Malinoski F, Treanor J. Safety and immunogenicity of a heptavalent pneumo-coccal conjugate vaccine in healthy adult volunteers. Presented at the Infectious Diseases Society of America, Annual Meeting, San Francisco, CA, 1995; Abstract #389, page 114.
- Åhman H, Käyhty H, Leroy O, Froeschle J, Eskola J. Immunogenicity of octavalent pneumococcal (Pnc) conjugate vaccines (PncD, PncT) in Finnish infants. 36th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC), New Orleans, LA, 1996; Abstract G040, page 150.
- Lee C-J, Lock RA, Andrew PW, Mitchell TJ, Hansman D, Paton JC. Protection of infant mice from challenge with Streptococcus pneumoniae type 19F by immuni-zation with a type 19F polysaccharide-pneumolysoid conjugate. Vaccine. 1994;12:785–878. DOIGoogle Scholar
- Schneerson R, Levi L, Robbins JB, Bryla DM, Schiffman G, Lagergard T. Synthesis of a conjugate vaccine composed of pneumococcus type 14 capsular polysaccharide bound to pertussis toxin. Infect Immun. 1992;60:3528–32.PubMedGoogle Scholar
- van de Wijgert JHHM, Verheul AFM, Snippe H, Check IJ, Hunter RL. Immunogenicity of Streptococcus pneumoniae type 14 capsular polysaccharide: influence of carriers and adjuvants on isotype distribution. Infect Immun. 1991;59:2750–7.PubMedGoogle Scholar
- Alonso de Velasco E, Merkus D, Anderton S, Verheul AFM, Lizzio EF, van der Zee R, Synthetic peptides representing T-cell epitopes act as carriers in pneumococcal polysaccharide conjugate vaccines. Infect Immun. 1995;63:961–8.PubMedGoogle Scholar
- Schneerson R, Robbins JB, Parke JC, Bell C, Schlesselman JJ, Sutton A, Quantitative and qualitative analyses of serum antibodies elicited in adults by Haemophilus influenzae type b and pneumococcus type 6A capsular polysaccharide-tetanus toxoid conjugates. Infect Immun. 1986;52:519–28.PubMedGoogle Scholar
- Vella PP, Marburg S, Staub JM, Kniskern PJ, Miller W, Hagopian A, Immunogenicity on conjugate vaccines consisting of pneumococcal capsular polysaccharide type 6B, 14, 19F, and 23F and meningococcal outer membrane protein complex. Infect Immun. 1992;60:4977–83.PubMedGoogle Scholar
- Fattom A, Vann WF, Szu SC, Sutton A, Li X, Bryla D, Synthesis and physicochemical and immuno-logical characterization of pneumococcus type 12F polysaccharide-diphtheria toxoid conjugates. Infect Immun. 1988;56:2292–8.PubMedGoogle Scholar
- Giebink GS, Koskela M, Vella PP, Harris M, Le CT. Pneumococcal capsular polysaccharide-meningococcal outer membrane protein complex conjugate vaccines; immunogenicity and efficacy in experimental pneumococcal otitis media. J Infect Dis. 1993;167:347–55.PubMedGoogle Scholar
- Kennedy EL, Anderson EL. Safety and immunogenicity of a heptavalent pneumococcal conjugate vaccine in adults and children. Presented at the 33rd Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC), New Orleans, LA, 1993; Abstract #167, page 150.
- Nieminen T, Virolainen A, Käyhty H, Leinonen M, Eskola J. Immune response to tetravalent pneumo-coccal conjugate vaccine in adults. Presented at the 32nd Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC), Anaheim, CA, 1992; Abstract #1283, page 324.
- Malinoski F, Hogerman D, Ginsberg H, Madore D. Safety and immunogenicity of pentavalent S. pneumoniae conjugate vaccines in healthy adults. Presented at the 33rd Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC), New Orleans, LA, 1993; Abstract #168, page 150.
- Portier H, Choutet P, Duong M, Moreau M, Danve B. Serum antibody response to a tetravalent pneumo-coccal-tetanus toxoid conjugate vaccine in adult volunteers. Presented at the 34th Interscience Con-ference on Antimicrobial Agents and Chemotherapy (ICAAC), Orlando, FL, 1994; Abstract #G91, page 237.
- Nieminen T, Käyhty H, Eskola J. Mucosal and serum immune response to tetravalent pneumococcal conjugate vaccines in adults. Presented at the 34th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC), Orlando, FL, 1994; Abstract #G89, page 237.
- Käyhty H, Rönnberg P-R, Virolainen A, Eskola J. Immunogenicity of tetravalent pneumococcal capsular polysaccharide-meningococcal outer membrane protein conjugate vaccine in Finnish 2-year old children. Presented at the 33rd Interscience Con-ference on Antimicrobial Agents and Chemotherapy (ICAAC), New Orleans, LA, 1993; Abstract #172, page 151.
- Zangwill K, Melamed R, Ward J, Marcy S, Patridge S, Greenberg D, Safety and immunogenicity of a heptavalent pneumococcal conjugate vaccine among children 12-24 months of age. Presented at the Annual Meeting of the American Pediatric Society/Society for Pediatric Research, San Diego, CA, 1995; Abstract #1130, page 191A.
- Dagan R, Melamed R, Abramson O, Piglansky L, Greenberg D, Mendelman P, Effect of heptavalent pneumococcal-OMPC conjugate vaccine on nasopharyngeal carriage when administered during the 2nd year of life. Presented at the Annual Meeting of the American Pediatric Society/Society for Pediatric Research, San Diego, CA, 1995; Abstract #1020, page 172A.
- Steinhoff D, Edward K, Keyseling H, Thoms ML, Johnson C, Madore D, A randomized comparison of three bivalent Streptococcus pneumoniae glyco-protein conjugate vaccines in young children: effect of polysaccharide size and linkage characteristics. Pediatr Infect Dis J. 1994;13:368–72. DOIPubMedGoogle Scholar
- Chiu SS, Grenberg DP, Partride S, Safety and immunogenicity of a pentavalent pneumococcal conjugate vaccine in healthy toddlers. Presented at the 35th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC), San Francisco, CA, 1995; Abstract #G71, page 171.
- Kennedy D, DeRousse C, Anderson E. Immunologic response of 12-18 month old children to licensed pneumococcal polysaccharide vaccine primed with Streptococcus pneumoniae 19F conjugate vaccine. Presented at the 34th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC), Orlando,FL, 1994; Abstract #G88, page 236.
- Keyserling H, Bosley C, Starr S, Watson B, Laufer D, Anderson E, Immunogenicity of pneumococcal type 14 conjugate vaccine in infants. Presented at the Annual Meeting of the American Pediatric Society/Society for Pediatric Research, Seattle, WA, 1994; Abstract #1087, page 184A.
- Käyhty H, Åhman H, Rönnberg P-R, Tillikainen R, Eskola J. Pneumococcal polysaccharide-meningococcal outer membrane protein complex conjugate vaccine is immunogenic in infants. J Infect Dis. 1995;172:1273–8.PubMedGoogle Scholar
- Yogev R, Gupta S, Emanuel B, William K, Adams J. Safety, tolerability and immunogenicity of tetravalent (6B, 14, 19F, 23F) pneumococcal (Pn) conjugate vaccine in infants given concurrently with routine immunizations. Presented at the 33rd Interscience Conference on Antimicrobial Agents and Chemo-therapy (ICAAC), New Orleans, LA, 1993; Abstract #170, page 150.
- Åhman H, Käyhty H, Tamminen P, Uistola A, Malinoski F, Eskola J. Pentavalent pneumococcal oligosaccharide conjugate vaccine PncCRM is well tolerated and able to induce an antibody response in infants. Pediatr Infect Dis J. 1996;15:134–9. DOIPubMedGoogle Scholar
- Käyhty H, Åhman H, Vuorela A, Malinkoski F, Eskola J. Response at 24 months to a booster dose to pneumococcal (Pnc) polysaccharide (PS) vaccine in children immunized with pentavalent Pnc conjugate vaccine (PncCRM) in infancy. Presented at the 36th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC), New Orleans, LA, 1996; Abstract #G108, page 162.
- Daum RS, Steinhoff M, Rennels M, Rothstein E, Resinger K, Keyserling H, Immunogenicity of S. pneumoniae oligo- and polysaccharide-CRM197 conjugate vaccines in healthy US infants. Presented at the 35th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC), San Francisco, CA, 1995; Abstract #GG5, page 170.
- Leach A, Ceesay SJ, Banya WAS, Greenwood BM. Pilot trial of a pentavalent pneumococcal poly-saccharide/protein conjugate vaccine in Gambian infants. Pediatr Infect Dis J. 1996;15:333–9. DOIPubMedGoogle Scholar
- Åhman H, Käyhty H, Leroy O, Froeschle J, Eskola J. Immunogenicity of tetravalent pneumococcal conjugate vaccines (PncD, PncT) in Finnish infants. Presented at the 35th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC), San Francisco, CA, 1995; Abstract #G69, page 170.
- Åhman H, Käyhty H, Leroy O, Froeschle J, Eskola J. Booster response to polysaccharide and conjugate vaccine at 14 months after immunization with tetravalent pneumococcal (Pnc) conjugate vaccine PncD in infancy. Presented at the 36th Interscience Conference on Antimicrobial Agents and Chemo-therapy (ICAAC), New Orleans, LA, 1996; Abstract G110, page 163.
- Åhman H, Käyhty H, Leroy O, Eskola J. Booster response to polysaccharide vaccine at 14 months after immunization with tetravalent pneumococcal (Pnc) conjugate vaccine PncT in infancy is dose dependent. Presented at the 36th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC), New Orleans, LA, 1996; Abstract #G109, page 162.
- Jonsdottir I, Sigurdardottir STH, Vidarsson G, Ingolfsdottir G, Gudnason T, Dadidsdottir K, Pneumococcal conjugate vaccines elicit functional antibodies in infants. Scand J Immunol. 1996;43:710.
- Quataert SA, Kirch CS, Quackenbush Wiedl LJ, Phipps DC, Strohmeyer S, Cimino CO, Assignment of weight-based antibody units to a human antipneumococcal standard reference serum, Lot 89-S. Clin Diagn Lab Immunol. 1995;2:590–7.PubMedGoogle Scholar
- Dagan R, Melamed R, Muallem M, Piglansky L, Greenberg D, Abramson O, Reduction of naso-pharyngeal carriage of penicillin-resistant pneumococci by pneumococcal-OMPC conjugate vac-cine during second year of life. Presented at the 35th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC), San Francisco, CA, 1995; Abstract #2, page 158.
- Kauppi M, Eskola J, Käyhty H. Anti-capsular polysaccharide antibody concentrations in saliva after immunization with Haemophilus influenzae type b conjugate vaccines. Pediatr Infect Dis J. 1995;14:286–94. DOIPubMedGoogle Scholar
- Kauppi M, Saarinen L, Käyhty H. Anti-capsular polysaccharide antibodies reduce nasopharyngeal colonization by Haemophilus influenzae type b in infant rats. J Infect Dis. 1993;167:365–71.PubMedGoogle Scholar
- Giebink GS, Meier JD, Quartey MK, Liebeler CL, Le CT. Immunogenicity and efficacy of Streptococcus pneumoniae polysaccharide-protein conjugate vaccines against homologous and heterologous serotypes in the chinchilla otitis media model. J Infect Dis. 1996;173:119–27.PubMedGoogle Scholar
- Shurin PA, Rehmus JM, Johnson CE, Marchant CD, Carlin SA, Super DM, Bacterial polysaccharide immune globulin for prophylaxis of acute otitis media in high-risk children. J Pediatr. 1993;123:801–10. DOIPubMedGoogle Scholar
- Booy R, Hodgson S, Carpenter L, Mayon-White RT, Slack MPE, Macfarlane JA, Efficacy of Haemophilus influenzae type b conjugate vaccine PRP-T. Lancet. 1994;344:362–6. DOIPubMedGoogle Scholar
- Sankilampi U, Honkanen PO, Bloigu A, Herva E, Leinonen M. Antibody response to pneumococcal capsular polysaccharide vaccine in the elderly. J Infect Dis. 1996;173:387–93.PubMedGoogle Scholar
- Musher DM, Groover JE, Graviss A, Baughn RE. The lack of association between aging and postvaccination levels of IgG antibody to capsular polysaccharide of Streptococcus pneumoniae. Clin Infect Dis. 1996;22:165–7.PubMedGoogle Scholar
- Powers D, Moore S, Mink CM. Vaccination of elderly adults with Haemophilus influenzae type b (Hib) polysaccharide or conjugate vaccine. Presented at the 35th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC), San Francisco, CA, 1995; Abstract #976, page 171.
- Powers DC, Anderson EL, Lottenbach K, Mink CM. Reactogenicity and immunogenicity of a protein-conjugated pneumococcal oligosaccharide vaccine in older adults. J Infect Dis. 1996;173:1014–8.PubMedGoogle Scholar
- Shahid NS, Steinhoff MC, Hoque SS, Begum T, Thompson C, Siber GR. Serum, breast milk, and infant antibody after maternal immunisation with pneumococcal vaccine. Lancet. 1995;346:1252–7. DOIPubMedGoogle Scholar
- O'Dempsey TJD, McArdle T, Ceesay S, Banya WAS, Demba E, Secka O, Immunization with a pneumococcal capsular polysaccharide vaccine during pregnancy. Vaccine. In press.
- Englund JA, Glezen WP, Turner C, Harvey J, Thompson C, Siber GR. Transplacental antibody transfer following maternal immunization with polysaccharide and conjugate Haemophilus influenzae type b vaccines. J Infect Dis. 1995;171:99–105.PubMedGoogle Scholar
- Mulholland K, Rahaman O, Suara R, Siber G, Roberton D, Jaffar S, Maternal immunization with Haemophilus influenzae type b polysaccharide-tetanus protein conjugate vaccine in the Gambia. JAMA. 1996;275:1182–8. DOIPubMedGoogle Scholar
Page created: December 21, 2010
Page updated: December 21, 2010
Page reviewed: December 21, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.