Volume 3, Number 3—September 1997
Perspective
Host Genes and HIV: The Role of the Chemokine Receptor Gene CCR5 and Its Allele (∆32 CCR5)
Figure 1

Figure 1. Predicted structure and amino acid sequence of CCR5. The typical serpentine structure is depicted with three extracellular (top) and three intracellular (bottom) loops and seven transmembrane (TM) domains. The shaded horizontal band represents the cell membrane. Amino acids are listed with a single letter code. Residues that are identical to those of CCR2b are indicated by dark shading, and highly conservative substitutions are indicated by light shading. Extracellular cysteine residues are indicated by bars, and the single N-linked glycosylation consensus site is indicated by an asterisk. Reprinted and modified with permission from the authors and Cell (39). Copyright (1996) Cell Press.
References
- World Health Organization. Acquired immunodeficiency syndrome (AIDS)November 20, 1996. Wkly Epidemiol Rec. 1996;48:361.
- Steel CM, Ludlam CA, Beatson D, Peutherer JF, Cuthbert RJG, Simmonds P, HLA haplotype A1 B8 DR3 as a risk factor for HIV-related disease. Lancet. 1988;1:1185–8. DOIPubMedGoogle Scholar
- Kaslow RA, Carrington M, Apple R, Park L, Munoz A, Saah AJ, Influence of combinations of human major histocompatibility complex genes on the course of HIV-1 infection. Nat Med. 1996;2:405–11. DOIPubMedGoogle Scholar
- McNeil AJ, Yap PL, Gore SM, Brettle RP, McCol M, Wyld R, Association of HLA types A1-B8-DR3 and B27 with rapid and slow progression of HIV disease. QJM. 1996;89:177–85.PubMedGoogle Scholar
- Malkovsky M. HLA and natural history of HIV infection. Lancet. 1996;348:142–3. DOIPubMedGoogle Scholar
- Rowland-Jones S, Sutton J, Ariyoshi K, Dong T, Gotch F, McAdam S, HIV-specific cytotoxic T-cells in HIV-exposed but uninfected Gambian women. Nat Med. 1995;1:59–64. DOIPubMedGoogle Scholar
- Paxton WA, Martin SR, Tse D, O'Brient TR, Skurnick J, VanDevanter NL, Relative resistance to HIV-1 infection of CD4 lymphocytes from persons who remain uninfected despite multiple high-risk sexual exposures. Nat Med. 1996;2:412–7. DOIPubMedGoogle Scholar
- Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, Horuk R, . Homozygous defect in HIV-1 co-receptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell. 1996;86:367–77. DOIPubMedGoogle Scholar
- Fowke KR, Nagelkerke NJD, Kimani J, Simonsen JN, Anzala AO, Bwayo JJ, Resistance to HIV-1 infection among persistently seronegative prostitutes in Nairobi, Kenya. Lancet. 1996;348:1347–51. DOIPubMedGoogle Scholar
- Stephens H, Beyrer C, Mastro T, Nelson KE, Klaythong R, Kunachiwa W, HLA class I alleles in a cohort of HIV-1 exposed, persistently seronegative (HEPS) sex workers (CSWs) in Northern Thailand. In: Proceedings of the 3rd Conference on Retroviruses and Opportunistic Infections; 1996 January. Washington (DC): American Society for Microbiology; 1996.
- Huang Y, Paxton WA, Wolinsky SM, Neumann AU, Zhang L, He T, The role of a mutant CCR5 allele in HIV-1 transmission and disease progression. Nat Med. 1996;2:1240–3. DOIPubMedGoogle Scholar
- Fowke K, Slaney LA, Simonsen JN, Nagelkerke N, Nath A, Anzala AO, HIV-1 resistant prostitutes: an innate mechanism. In: Proceedings of the 1st National Conference on Human Retroviruses; Dec 12-16. Washington (DC): American Society for Microbiology; 1993; p. 82.
- Plummer FA, Fowke K, Nagelkerke NDJ, Simonsen JN, Bwayo J, Ngugi E, Evidence of resistance to HIV among continuously exposed prostitutes in Nairobi, Kenya. In: Abstracts of the 9th International Conference on AIDS; Berlin 1993 June 6-11; WS-A07-3. Sponsored by the International AIDS Society and World Health Organization.
- Rowland-Jones SL, McMichael A. Immune responses in HIV-exposed seronegatives: have they repelled the virus? Curr Opin Immunol. 1995;7:448–55. DOIPubMedGoogle Scholar
- Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber CM, Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature. 1996;382:722–5. DOIPubMedGoogle Scholar
- Dean M, Carrington M, Winkler C, Huttley GA, Smith MW, Allikmets R, Genetic restriction of HIV-1 infection and progression to AIDS by a deletion of the CKR5 structural gene. Science. 1996;273:1856–62. DOIPubMedGoogle Scholar
- Michael NL, Chang G, Louie LG, Mascola JR, Dondero D, Birx DL, The role of viral phenotype and CCR-5 gene defects in HIV-1 transmission and disease progression. Nat Med. 1997;3:338–40. DOIPubMedGoogle Scholar
- Zimmerman PA, Bucklerwhite A, Alkhatib G, Spalding T, Kubofcik J, Combadiere C. Inherited resistance to HIV-1 conferred by an inactivating mutation in CC chemokine receptor 5--studies in populations with contrasting clinical phenotypes, defined racial background, and quantified risk. Mol Med. 1997;3:23–36.PubMedGoogle Scholar
- Biti R, Ffrench R, Young J, Bennetts B, Stewart G. HIV-1 infection in an individual homozygous for the CCR5 deletion allele. Nat Med. 1997;3:252–3. DOIPubMedGoogle Scholar
- O'Brien TR, Winkler C, Dean M, Nelson JAE, Carrington M, Michael NL, HIV-1 infection in a man homozygous for CCR5 ∆32. Lancet. 1997;349:1219. DOIPubMedGoogle Scholar
- Theodorou I, Meyer L, Magierowska M, Katlama C, Rouzious C; Seroco Study Group. HIV-1 infection in an individual homozygous for CCR5 ∆32. Lancet. 1997;349:1219–20. DOIPubMedGoogle Scholar
- Eugen-Olsen J, Iversen AKN, Garred P, Koppelhus U, Pedersen C, Benfield TL, Heterozygosity for a deletion in the CKR-5 gene leads to prolonged AIDS-free survival and slower CD4 T-cell decline in a cohort of HIV-seropositive individuals. AIDS. 1997;11:305–10. DOIPubMedGoogle Scholar
- Garred P, Madsen HO, Balslev U, Hofmann B, Gerstoft J, Svejgaard A. Susceptibility to HIV infection and progression of AIDS in relation to variant alleles of mannose-binding lectin. Lancet. 1997;349:236–40. DOIPubMedGoogle Scholar
- Brinkman BMN, Keet IPM, Miedema F, Verweij CL, Klein M. Polymorphisms within the human tumor necrosis factor-a promoter region in human immunodeficiency virus type 1-seropositive persons. J Infect Dis. 1997;375:188–90.
- Khoo SH, Pepper L, Snowden N, Hajeer AH, Vallely P, Wilkins EG, Tumor necrosis factor c2 microsatellite allele is associated with the rate of HIV disease progression. AIDS. 1997;11:423–8. DOIPubMedGoogle Scholar
- Murphy PM. Chemokine receptors: structure, function and role in microbial pathogenesis. Cytokine Growth Factor Rev. 1996;7:47–64. DOIPubMedGoogle Scholar
- Napolitano M, Zingoni A, Bernardini G, Spinetti G, Nista A, Storlazzi C, Molecular cloning of TER1, a chemokine receptor-like gene expressed by lymphoid tissues. J Immunol. 1996;157:2759–63.PubMedGoogle Scholar
- Miller LH. Impact of malaria on genetic polymorphism and genetic diseases in Africans and African Americans. Proc Natl Acad Sci U S A. 1997;91:2415–9. DOIGoogle Scholar
- Tournamille C, Colin Y, Cartron JP, Le Van Kim C. Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals. Nat Genet. 1995;10:224–8. DOIPubMedGoogle Scholar
- Pleskoff O, Treboute C, Brelot A, Heveker N, Seman M, Alizon M. Identification of a chemokine receptor encoded by human cytomegalovirus as a cofactor for HIV-1 entry. Science. 1997;276:1874–8. DOIPubMedGoogle Scholar
- Cocchi F, DeVico AL, Garzine-Demo A, Arya SK, Gallo RC, Lusso P. Identification of RANTES, MIP-1a and MIPß as the major HIV-suppressive factors produced by CD8+ T cells. Science. 1995;270:1811–5. DOIPubMedGoogle Scholar
- Deng HK, Liu R, Ellmeier W, Choe S, Unutmaz D, Burkhart M, Identification of a major coreceptor for primary isolates of HIV-1. Nature. 1996;381:661–6. DOIPubMedGoogle Scholar
- Feng Y, Broder CC, Kennedy PE, Berger EA. HIV-1 entry cofactorfunctional CDNA cloning of seventransmembrane, G protein-coupled receptor. Science. 1996;272:872–7. DOIPubMedGoogle Scholar
- Samson M, Labbe O, Mollereau C, Vassart G, Parmentier M. Molecular cloning and functional expression of a new human CC-chemokine receptor gene. Biochemistry. 1996;35:3362–6. DOIPubMedGoogle Scholar
- Dragic T, Litwin V, Allaway GP, Martin SR, Huang YX, Nagashima KA, HIV-1 entry into CD4(+) cells is mediated by the chemokine receptor CC-CKR-5. Nature. 1996;381:667–73. DOIPubMedGoogle Scholar
- Alkhatib G, Combadiere C, Broder CC, Feng Y, Kennedy PE, Murphy PM, CC CKRSA RANTES, MIP-1-α, MIP-1ß receptor as a fusion cofactor for macrophage-tropic HIV-1. Science. 1996;272:1955–8. DOIPubMedGoogle Scholar
- Choe H, Farzan M, Sun Y, Sullivan N, Rollins B, Ponath PD, The ß-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell. 1996;85:1135–48. DOIPubMedGoogle Scholar
- Doranz BJ, Rucker J, Yi YJ, Smyth RJ, Samson M, Peiper SC, A dual-tropic primary HIV-1 isolate that uses fusin and the ß-chemokine receptors CKR-5, CKR-3 and CKR-2b as fusion cofactors. Cell. 1996;85:1149–58. DOIPubMedGoogle Scholar
- He J, Chen Y, Farzan M, Choe H, Ohagen A, Gartner S, CCR3 and CCR5 are co-receptors for HIV-1 infection of microglia. Nature. 1997;385:645–9. DOIPubMedGoogle Scholar
- Bleul CC, Wu L, Hoxie JA, Springer TA, Mackay CR. The HIV coreceptors CXCR4 and CCR5 are differentially expressed and regulated on human T lymphocytes. Proc Natl Acad Sci U S A. 1997;94:1925–30. DOIPubMedGoogle Scholar
- Simmons G, Wilkinson D, Reeves JD, Dittmar MT, Beddows S, Weber J, Primary, syncytium-inducing human immunodeficiency virus type 1 isolates are dual-tropic and most can use either lestr or CCR5 as coreceptors for virus entry. J Virol. 1996;70:8355–60.PubMedGoogle Scholar
- Zhang L, Huang Y, He T, Cao Y, Ho DD. HIV-1 subtype and second-receptor use. Nature. 1996;383:768. DOIPubMedGoogle Scholar
- Cocchi F, DeVico AL, Garzino-Demo A, Cara A, Gallo RC, Lusso P. The V3 domain of the HIV-1 gp 120 envelope glycoprotein is critical for chemokine-mediated blockade of infection. Nat Med. 1996;2:1244–7. DOIPubMedGoogle Scholar
- Wu L, Gerard NP, Wyatt R, Choe H, Parolin C, Ruffing N, CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5. Nature. 1996;384:179–83. DOIPubMedGoogle Scholar
- Trkola A, Dragic T, Arthos J, Binley JM, Olson WC, Allaway GP, CD4-dependent, antibody-sensitive interactions between HIV-1 and its co-receptor CCR5. Nature. 1996;384:184–7. DOIPubMedGoogle Scholar
- Rucker J, Samson M, Doranz BJ, Libert F, Berson JF, Yi Y, Regions in ß-chemokine receptors CCR5 and CCR2b that determine HIV-1 cofactor specificity. Cell. 1996;87:437–46. DOIPubMedGoogle Scholar
- Atchison RE, Gosling J, Monteclaro FS, Franci C, Digilio L, Charo IF, Multiple extracellular elements of CCR5 and HIV-1: dissociation from response to chemokines. Science. 1996;274:1924–6. DOIPubMedGoogle Scholar
- Lapham C, Ouyang J, Chandrasekhar B, Nguyen N, Dimitrov D, Golding H. Evidence for cell-surface association between fusin and the CD4-gp 120 complex in human cell lines. Science. 1996;274:602–5. DOIPubMedGoogle Scholar
- Oravecz T, Pall M, Norcross MA. ß-Chemokine inhibition of monocytotropic HIV-1 infection. Interference with a postbinding fusion step. J Immunol. 1996;157:1329–32.PubMedGoogle Scholar
- Paxton WA, Dragic T, Koup RA, Moore JP. Perspective--research highlights at the Aaron Diamond AIDS Research Center--the beta-chemokines, HIV type 1 second receptors, and exposed uninfected persons. AIDS Res Hum Retroviruses. 1996;12:1203–7. DOIPubMedGoogle Scholar
- Wu L, Paxton WA, Kassam N, Ruffing N, Rottman JB, Sullivan N, CCR5 levels and expression pattern correlate with infectability by macrophage-tropic HIV-1, in vitro. J Exp Med. 1997;185:1681–91. DOIPubMedGoogle Scholar
- Kaslow RA, Koup R, Zimmerman P, Dean M, Naik E, Enger C, HLA scoring profile (HSP) and CCR5 deletion heterozygosity as predictors of AIDS in seroconverters. In: Proceedings of the 4th Conference on Retroviruses and Opportunistic Infections; Jan 22-26. Washington (DC): American Society of Microbiology: 1997; p. 69.
- Combadiere C, Ahuja SK, Murphy PM. Cloning and functional expression of a human eosinophil CC chemokine receptor. J Biol Chem. 1996;271:11034.PubMedGoogle Scholar
- Daugherty BL, Siciliano SJ, DeMartino JA, Malkowitz L, Sirotina A, Springer MS. Cloning, expression, and characterization of the human eosinophil eotaxin receptor. J Exp Med. 1996;183:2349–54. DOIPubMedGoogle Scholar
- Ponath PD, Qin S, Post TW, Wang J, Wu L, Gerard NP, Molecular cloning and characterization of a human eotaxin receptor expressed selectively on eosinophils. J Exp Med. 1996;183:2437–48. DOIPubMedGoogle Scholar
- D'Souza MP, Harden VA. Chemokines and HIV-1 second receptors. Nat Med. 1996;2:1293–300. DOIPubMedGoogle Scholar
- Kolata G. New AIDS study reveal startling immunity data. The New York Times. 1996; September 27, 1996. p. A13.
- Kolata G. Geneticists seek to understand why disease genes spread. The New York Times 1996; Sect. B:5-9.
- Easterbrook PJ, Chmiel JS, Hoover DR, Saah AJ, Kaslow RA, Kingsley LA, Racial and ethnic differences in human immunodeficiency virus type 1 (HIV-1) seroprevalence among homosexual and bisexual men.The multicenter AIDS cohort study. Am J Epidemiol. 1993;138:415–29.PubMedGoogle Scholar
- Soto-Ramirez LE, Renjifo B, McLane MF, Marlink R, O'Hara C, Sutthent R, HIV-1 Langerhans' cell tropism associated with heterosexual transmission of HIV. Science. 1996;271:1291–3. DOIPubMedGoogle Scholar
1Garred P, Eugen-Olsen J, Iversen AKN, Benfield TL, Svejgaard A, Hofmann, B, the Copenhagen AIDS Study Group. Dual effect of CCR5 D32 gene deletion in HIV-1-infected patients. Lancet 1997; 349:1884.
2Martinson JJ, Chapman NH, Rees DC, Lui Y-T, Clegg JB. Global distribution of the CCR5 gene 32-basepair deletion [letter]. Nature Genetics 1997;16:100-103.
3Centers for Disease Control and Prevention. Facts about CCR5 and protection against HIV-1 infection; 1997.