Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 7, Number 2—April 2001
THEME ISSUE
4th Decennial International Conference on Nosocomial and Healthcare-Associated Infections
Prevention is Primary

Automated Methods for Surveillance of Surgical Site Infections

Richard Platt*†Comments to Author , Deborah S. Yokoe†, Kenneth E. Sands‡, and the CDC Eastern Massachusetts Prevention Epicenter Investigators
Author affiliations: *Harvard Medical School and Harvard Pilgrim Health Care, Boston, Massachusetts, USA; †Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA; ‡Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA

Main Article

Figure

Performance of various methods for detection of postdischarge surgical site infections for 4,086 nonobstetric surgical procedures with no inpatient infection. Lines represent fitted receiver operating characteristic (ROC) curves for three logistic regression models, which differ by data sources available for generating probabilities. Points represent performance of four different recursive partitioning models and data from patient and physician surveys. For analyses limited to hospital data and

Figure. Performance of various methods for detection of postdischarge surgical site infections for 4,086 nonobstetric surgical procedures with no inpatient infection. Lines represent fitted receiver operating characteristic (ROC) curves for three logistic regression models, which differ by data sources available for generating probabilities. Points represent performance of four different recursive partitioning models and data from patient and physician surveys. For analyses limited to hospital data and outpatient antibiotic (Abx) dispensing data, the logistic regression model had equivalent performance to classification trees at the points shown. The fitted ROC curve falls below this point because most procedures clustered around a few discrete probabilities and limited data points cause approximation of the ROC curve to be less accurate. The recursive partitioning high-cost model accepts 15 false-positives at the margin to capture one true infection; the low-cost model accepts 5 false positives at the margin (24

Main Article

References
  1. Haley  RW, Culver  DH, White  JW, Morgan  WM, Emori  TG, Munn  VP, The efficacy of infection surveillance and control programs in preventing nosocomial infections in US hospitals. Am J Epidemiol. 1985;121:182205.PubMedGoogle Scholar
  2. Gaynes  RP, Horan  TC. Surveillance of nosocomial infections. In: C.G. Mayhall, editor. Hospital epidemiology and infection control. 2nd ed. Baltimore: Lippincott, Williams and Wilkins, 1999. Chapter 85.
  3. Mangram  AJ, Horan  TC, Pearson  ML, Silver  LC, Jarvis  WL. Guideline for the prevention of surgical site infection, 1999. Infect Control Hosp Epidemiol. 1999;20:24778. DOIPubMedGoogle Scholar
  4. Emori  TG, Edwards  JR, Culver  DH, Sartor  C, Stroud  LA, Gaunt  EE, Accuracy of reporting nosocomial infections in intensive-care-unit patients to the National Nosocomial Infections Surveillance system: a pilot study. Infect Control Hosp Epidemiol. 1998;19:30816. DOIPubMedGoogle Scholar
  5. Sands  K, Vineyard  G, Platt  R. Surgical site infections occurring after hospital discharge. J Infect Dis. 1996;173:96370. DOIPubMedGoogle Scholar
  6. Reimer  K, Gleed  G, Nicolle  LE. The impact of postdischarge infection on surgical wound infection rates. Infect Control. 1987;8:23740.PubMedGoogle Scholar
  7. Manian  FA, Meyer  L. Comprehensive surveillance of surgical wound infections in outpatient and inpatient surgery. Infect Control Hosp Epidemiol. 1990;11:51520. DOIPubMedGoogle Scholar
  8. Burns  SJ. Postoperative wound infections detected during hospitalization and after discharge in a community hospital. Am J Infect Control. 1982;10:605. DOIPubMedGoogle Scholar
  9. Polk  BF, Shapiro  M, Goldstein  P, Tager  I, Gore-White  B, Schoenbaum  SC. Randomised clinical trial of perioperative cefazolin in preventing infection after hysterectomy. Lancet. 1980;1:43741. DOIPubMedGoogle Scholar
  10. Brown  RB, Bradley  S, Opitz  E, Cipriani  D, Pieczrka  R, Sands  M. Surgical wound infections documented after hospital discharge. Am J Infect Control. 1987;15:548. DOIPubMedGoogle Scholar
  11. Byrne  DJ, Lynce  W, Napier  A, Davey  P, Malek  M, Cuschieri  A. Wound infection rates: the importance of definition and post-discharge wound surveillance. J Hosp Infect. 1994;26:3743. DOIPubMedGoogle Scholar
  12. Holtz  TH, Wenzel  RP. Postdischarge surveillance for nosocomial wound infection: a brief review and commentary. Am J Infect Control. 1992;20:20613. DOIPubMedGoogle Scholar
  13. Sherertz  RJ, Garibaldi  RA, Marosok  RD. Consensus paper on the surveillance of surgical site infections. Am J Infect Control. 1992;20:26370. DOIGoogle Scholar
  14. Owings  MF, Kozak  LJ. Ambulatory and inpatient procedures in the United States, 1996. National Center for Health Statistics. Vital Health Stat. 1999;13:139.
  15. Lawrence  L, Hall  MJ. National Center for Health Statistics. 1977 Summary: National Hospital Survey. Adv Data. 1999;308:116.PubMedGoogle Scholar
  16. Garibaldi  RA, Cushing  D, Lerer  T. Risk factors for postoperative infection. Am J Med. 1991;91:158S63S. DOIPubMedGoogle Scholar
  17. Haynes  SR, Lawler  PG. An assessment of the consistency of ASA physical status classification allocation [see comments]. Anaesthesia. 1995;50:1959. DOIPubMedGoogle Scholar
  18. Salemi  C, Anderson  D, Flores  D. American Society of Anesthesiology scoring discrepancies affecting the National Nosocomial Infection Surveillance System: surgical-site-infection risk index rates. Infect Control Hosp Epidemiol. 1997;18:2467. DOIPubMedGoogle Scholar
  19. Wenzel  R, Osterman  C, Hunting  K, Galtney  J. Hospital-acquired infections. I. Surveillance in a university hospital. Am J Epidemiol. 1976;103:25160.PubMedGoogle Scholar
  20. Broderick  A, Motomi  M, Nettleman  M, Streed  S, Wenzel  R. Nosocomial infections: validation of surveillance and computer modeling to identify patients at risk. Am J Epidemiol. 1990;131:73442.PubMedGoogle Scholar
  21. Hirschhorn  L, Currier  J, Platt  R. Electronic surveillance of antibiotic exposure and coded discharge diagnoses as indicators of postoperative infection and other quality assurance measures. Infect Control Hosp Epidemiol. 1993;14:218. DOIPubMedGoogle Scholar
  22. Yokoe  DS, Shapiro  M, Simchen  E, Platt  R. Use of antibiotic exposure to detect postoperative infections. Infect Control Hosp Epidemiol. 1998;19:31722. DOIPubMedGoogle Scholar
  23. Yokoe  DS. Enhanced methods for inpatient surveillance of surgical site infections following cesarean delivery [Abstract S-T3-03]. Fourth Decennial International Conference on Healthcare-Associated and Nosocomial Infections. 2000 Mar 5-9; Atlanta, GA; Centers for Disease Control and Prevention.
  24. Sands  K, Vineyard  G, Livingston  J, Christiansen  C, Platt  R. Efficient identification of postdischarge surgical site infections using automated medical records. J Infect Dis. 1999;179:43441. DOIPubMedGoogle Scholar
  25. Sands  K, Yokoe  D, Hooper  D. Tully, Platt R. Multi-institutional comparison of surgical site infection surveillance by screening of administrative and pharmacy data [Abstract M35]. Society of Healthcare Epidemiologists, Annual meeting; Apr 18-20 1999; San Francisco.
  26. Yokoe  DS, Christiansen  C, Sands  K, Platt  R. Efficient identification of postpartum infections occurring after discharge [Abstract P-T1-20]. 4th Decennial International Conference on Healthcare-associated and Nosocomial Infections. 2000 Mar 5-9; Atlanta, GA. Centers for Disease Control and Prevention.
  27. Von Korff  M, Wagner  EH, Saunders  K. A chronic disease score from automated pharmacy data. J Clin Epidemiol. 1992;45:197203. DOIPubMedGoogle Scholar
  28. Fishman  P, Goodman  M, Hornbrook  M, Meenan  R, Bachman  D, O'Keefe-Rosetti  M. Risk adjustment using automated pharmacy data: a global Chronic disease score. 2nd International Health Economic Conference, Rotterdam, the Netherlands, 1999.
  29. Clark  DO, Von Korff  M, Saunders  K, Baluch  WM, Simon  GE. A chronic disease score with empirically derived weights. Med Care. 1995;33:78395. DOIPubMedGoogle Scholar
  30. Kaye  KS, Sands  K, Donahue  JG, Chan  A, Fishman  P, Platt  R. Preoperative drug dispensing predicts surgical site infection. Emerg Infect Dis. 2001;7:5764. DOIPubMedGoogle Scholar

Main Article

¹The CDC Eastern Massachusetts Prevention Epicenter includes Blue Cross and Blue Shield of Massachusetts, CareGroup, Children's Hospital, Harvard Pilgrim Health Care, Partners Healthcare System, Tufts Health Plan, and Harvard Medical School. Investigators include L. Higgins, J. Mason, E. Mounib, C. Singleton, K. Sands, K. Kaye, S. Brodie, E. Perencevich, J. Tully, L. Baldini, R. Kalaidjian, K. Dirosario, J. Alexander, D. Hylander, A. Kopec, J. Eyre-Kelley, D. Goldmann, S. Brodie, C. Huskins, D. Hooper, C. Hopkins, M. Greenbaum, M. Lew, K. McGowan, G. Zanetti, A. Sinha, S. Fontecchio, R. Giardina, S. Marino, J. Sniffen, E. Tamplin, P. Bayne, T. Lemon, D. Ford, V. Morrison, D. Morton, J. Livingston, P. Pettus, R. Lee, C. Christiansen, K. Kleinman, E. Cain, R. Dokholyan, K. Thompson, C. Canning, D. Lancaster.

Page created: May 10, 2011
Page updated: May 10, 2011
Page reviewed: May 10, 2011
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external