Volume 10, Number 4—April 2004
Dispatch
West Nile Virus and High Death Rate in American Crows
Figure
![Survival curve (Kaplan-Meier curve; staggered-entry method) (10,11) for radio-tracked American Crows (N = 39) relative to the weekly minimum infection rates (MIR) of mosquitoes collected by week at radio-tracked crow roost sites in east-central Illinois in 2002.](/eid/images/03-0499-F1.jpg)
References
- Illinois Department of Public Health. West Nile virus [news release on the Internet]. 2002. Available from: http://www.idph.state.il.us/envhealth/wnv.htm
- Rowley I. The ABC of crow catching. Australian Bird Bander. 1968;6:47–55.
- Pyle P. Identification guide to North American birds, Part 1. Bolinas (CA): Slate Creek Press; 1997.
- Clark RG, James PC, Morari JB. Sexing adult and yearling American Crows by external measurements and discriminant analysis. J Field Ornithol. 1991;62:132–8.
- Dunstan TC. A tail feather package for radio-tagging raptorial birds. Inland Bird Banding News. 1973;45:6–10.
- Heinz-Taheny KM, Andrews JJ, Kinsel MJ, Pessier AP, Pinkerton ME, Lemberger KY, West Nile virus infection in free-ranging squirrels in Illinois. J Vet Diagn Invest. 2004. In press.PubMedGoogle Scholar
- Lanciotti RS, Kerst AJ, Nasci RS, Godsey MS, Mitchell CJ, Savage HM, Rapid detection of West Nile virus from human clinical specimens, field-collected mosquitoes, and avian samples by a TaqMan reverse transcriptase-PCR assay. J Clin Microbiol. 2000;38:4066–71.PubMedGoogle Scholar
- Marzluff JM, McGowan KJ, Donnelly RE, Knight RL. Causes and consequences of expanding American Crow populations. In: Marzluff, Bowman, Donnelly, editors. Avian conservation and ecology in an urbanizing world. Norwell (MA): Kluwer; 2001. p. 331–63.
- Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc. 1958;53:457–81. DOIGoogle Scholar
- Pollock KH, Winterstein SR, Bunck CM, Curtis PD. Survival analysis in telemetry studies: the staggered entry design. J Wildl Manage. 1989;53:7–15. DOIGoogle Scholar
- Blitvich BJ, Marlenee NL, Hall RA, Calisher CH, Bowen RA, Roehrig JT, Epitope-blocking enzyme linked immunosorbent assays for the detection of serum antibodies to West Nile virus in multiple avian species. J Clin Microbiol. 2003;41:1041–7. DOIPubMedGoogle Scholar
- McLean RG, Ubico SR, Docherty DE, Hansen WR, Sileo L, McNamera TS. West Nile virus transmission and ecology in birds. Ann N Y Acad Sci. 2001;951:54–7. DOIPubMedGoogle Scholar
- Komar N, Langevin S, Hinten S, Nemeth N, Edwards E, Hettler D, Experimental infection of North American birds with the New York 1999 strain of West Nile virus. Emerg Infect Dis. 2003;9:311–22.PubMedGoogle Scholar
- Bernard KA, Maffei JG, Jones SA, Kauffman EB, Ebel GD, Dupuis AP, West Nile virus infection in birds and mosquitoes, New York State, 2000. Emerg Infect Dis. 2001;7:679–85. DOIPubMedGoogle Scholar
- Caffrey C, Weston TJ, Smith SCR. High mortality among marked crows subsequent to the arrival of West Nile virus. Wildl Soc Bull. 2003;31:870–2.
- Garmendia AE, Van Kruinigen HJ, French RA, Anderson JF, Andreadis TG, Kumar A, Recovery and identification of West Nile virus from a hawk in winter. J Clin Microbiol. 2000;38:3110–1.PubMedGoogle Scholar
Page created: February 09, 2011
Page updated: February 09, 2011
Page reviewed: February 09, 2011
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.