Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 11, Number 2—February 2005
Research

Isolation of Waddlia malaysiensis, A Novel Intracellular Bacterium, from Fruit Bat (Eonycteris spelaea)

Paul K.B. Chua*†, John E. Corkill*, Poh Sim. Hooi‡, Soo Choon Cheng‡, Craig Winstanley*, and C. Anthony Hart*Comments to Author 
Author affiliations: *University of Liverpool, Liverpool, United Kingdom; †National Public Health Laboratory, Kuala Lumpur, Malaysia; ‡University of Malaya, Kuala Lumpur, Malaysia

Main Article

Table 1

Oligonucleotide primers for PCR and sequencing*

Gene target Primer sequence
PCR
16S rRNA (1,526 bp from ref. 20)
16S-FOR 5′ AGA GTT TGA TCC TGG 3′
16S-REV 5′ TAC CTT GTT ACG ACT T 3′
Tm = 55ºC
16S rRNA signature sequence (298 bp from ref. 21)
16S1GF 5′ CGG CGT GGA TGA GGC AT 3′
16S1GR 5′ TCA GTC CCA GTG TTG GC 3′
Tm = 51º C
16S – 23S rRNA signature sequence (1 kbp from ref. 21)
16SF2 5′ CCG CCC GTC ACA TCA TGG 3′
23S1GR 5′ TGG CTC ATC ATG CAA AAG GCA 3′
Tm = 61º C
23S rRNA signature sequence (627 bp: domain I from ref. 21)
23S1GR 5′ TGG CTC ATC ATG CAA AAG GCA 3′
Tm = 61º C
MurA signature sequence (690 bp from ref. 22)
murA-for 5′ GTN GGN GCN ACN GAR AA 3'
murA-rev 5′ GCC ATN ACR TAN GCR AAN CCN GC 3′
Tm = 55º C
sctN (331 bp)
sctN FOR 5' AGA RGG AAT GAA ACG TTC 3'
sctN REV 5' GGC TCR TTC ATA TCA TC 3'
Tm = 58º C
Sequencing
16S rRNA (1,526 bp)
Forward:
F1 (M13) 5 GTT TTC CCA GTC ACG ACG TTG TA 3′
F2 5′ GCT CAC CAA GGC TAA GAC GTC 3′ (277-298)
F3 5′ CTA GCT TTG ACC TGA CGC TGA T 3′ (752-774)
F4 5′ GAA TCT GCA ACT CGG CTC CAT G 3′ (1323-1345)
Reverse:
R1 (M13) 5′ TTG TGA GCG GAT AAC AAT TTC 3′
R2 5′ CAT CCT AAA TGC TGG CAA C 3' (392-373)
R3 5′ CAC CGC TAC ATG TGG AAT TCC 3′ (843-822)
R4 5′ GAT CCT CTC TAG CAC CAT ATC C 3′ (1358-1336)

*PCR, polymerase chain reaction; Tm, melting temperature.

Main Article

References
  1. Taylor  LH, Latham  SM, Woolhouse  ME. Risk factors for human disease emergence. Philos Trans R Soc Lond B Biol Sci. 2001;356:9839. DOIPubMedGoogle Scholar
  2. Frohlich  K, Thiede  S, Kozikowski  T, Jakob  W. A review of mutual transmission of important infectious diseases between livestock and wildlife in Europe. Ann N Y Acad Sci. 2002;969:413. DOIPubMedGoogle Scholar
  3. Simpson  VR. Wild animals as reservoirs of infectious diseases in the UK. Vet J. 2002;163:12846. DOIPubMedGoogle Scholar
  4. Paez  A, Nunez  C, Garcia  C, Boshell  J. Molecular epidemiology of rabies enzootics in Colombia: evidence for human and dog rabies associated with bats. J Gen Virol. 2003;84:795802. DOIPubMedGoogle Scholar
  5. Fooks  AR, Finnegan  C, Johnson  N, Mansfield  K, McElhinney  L, Manser  P. Human case of EL type 2 following exposure to bats in Angus, Scotland. Vet Rec. 2002;151:679.PubMedGoogle Scholar
  6. Halpin  K, Young  PL, Field  HE, Mackenzie  JS. Isolation of Hendra virus from pteropid bats: a natural reservoir of Hendra virus. J Gen Virol. 2000;81:192732.PubMedGoogle Scholar
  7. Bowden  TR, Westenberg  M, Wang  L-F, Eaton  BT, Boyle  DB. Molecular characterization of Menangle virus, a novel paramyxovirus which infects pigs, fruit bats and humans. Virology. 2001;283:35873. DOIPubMedGoogle Scholar
  8. Chua  KB, Koh  CL, Hooi  PS, Wee  KF, Khong  JH, Chu  BH, Isolation of Nipah virus from Malaysian Island flying-foxes. Microbes Infect. 2002;4:14551. DOIPubMedGoogle Scholar
  9. Chua  KB, Wang  LF, Lam  SK, Eaton  BT. Full length genome sequence of Tioman virus, a novel paramyxovirus in the genus Rubulavirus isolated from fruit bats in Malaysia. Arch Virol. 2002;147:132348. DOIPubMedGoogle Scholar
  10. Kim  GR, Lee  YT, Park  CH. A new natural reservoir of hantavirus: isolation of hantaviruses from lung tissue of bats. Arch Virol. 1994;134:8595. DOIPubMedGoogle Scholar
  11. Bunnell  JE, Hice  CL, Watts  DM, Montrueil  V, Tesh  RB, Vinetz  JM. Detection of pathogenic Leptospira spp infections among mammals captured in the Peruvian Amazon basin region. Am J Trop Med Hyg. 2000;63:2558.PubMedGoogle Scholar
  12. Arata  AA, Vaughn  JB, Newell  KW, Barth  RA, Gracian  M. Salmonella and Shigella infections in bats in selected areas of Colombia. Am J Trop Med Hyg. 1968;17:925.PubMedGoogle Scholar
  13. Heard  DJ, Young  JL, Goodyear  B, Ellis  GA. Comparative rectal bacterial flora of four species of flying fox (Pteropus sp). J Zoo Wildl Med. 1997;28:4715.PubMedGoogle Scholar
  14. Souza  V, Rocha  M, Valera  A, Eguiarte  LE. Genetic structure of natural populations of Escherichia coli in wild hosts on different continents. Appl Environ Microbiol. 1999;65:337385.PubMedGoogle Scholar
  15. Chua  KB. A novel approach for collecting samples from fruit bats for isolation of infectious agents. Microbes Infect. 2003;5:48790. DOIPubMedGoogle Scholar
  16. Heideman  PD, Utzurrum  RCB. Seasonality and synchrony of reproduction in three species of nectarivorous Philippines bats. Biomedcentral Ecology. 2003. Available from http://www.biomedcentral.com/1472-6785/3/11
  17. Arguin  PM, Murray-Lillibridge  K, Mirand  MEG, Smith  JS, Calaor  AB, Rupprecht  CE. Serologic evidence of Lyssavirus infection among bats, the Philippines. Emerg Infect Dis. 2002;8:25862. DOIPubMedGoogle Scholar
  18. How  SJ, Hobson  D, Hart  CA. Studies in vitro of the nature and synthesis of the cell wall of Chlamydia trachomatis. Curr Microbiol. 1984;10:26974. DOIGoogle Scholar
  19. How  SJ, Hobson  D, Hart  CA, Quayle  E. A comparison of the in vitro activity of antimicrobials against Chlamydia trachomatis examined by Giemsa and a fluorescent antibody stain. J Antimicrob Chemother. 1985;15:399404. DOIPubMedGoogle Scholar
  20. Rurangirwa  FR, Dilbeck  PM, Crawford  TB, McGuire  TC, McElwain  TF. Analysis of the 16S rRNA gene of microorganism WSU8-1044 from an aborted bovine foetus reveals that it is a member of the order Chlamydiales proposal of Waddliaceae fam. nov., Waddlia chondrophila gen. nov., sp. nov. Int J Syst Bacteriol. 1999;49:57781. DOIPubMedGoogle Scholar
  21. Everett  KDF, Bush  RM, Anderson  AA. Emended description of the order Chlamydiales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. nov. each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae, including a new genus and five new species, and standards for the identification of organisms. Int J Syst Bacteriol. 1999;49:41540. DOIPubMedGoogle Scholar
  22. Griffiths  E, Gupta  RS. Protein signatures distinctive of chlamydial species: horizontal transfers of cell wall biosynthesis genes glmU from archaea to chlamydiae and murA between chlamydiae and Streptomyces. Microbiology. 2002;148:25419.PubMedGoogle Scholar
  23. Subtil  A, Dautry-Varsat  A. Type III secretion system in Chlamydia species: identified members and candidates. Microbes Infect. 2000;2:3679. DOIPubMedGoogle Scholar
  24. Thomson  JD, Higgins  DG, Gibson  TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:467380. DOIPubMedGoogle Scholar
  25. Schachter  J, Stephens  RS, Timms  P, Kuo  C, Bavoil  PM, Birkelund  S, Radical changes to chlamydial taxonomy are not necessary just yet. Int J Syst Evol Microbiol. 2001;51:249.PubMedGoogle Scholar
  26. Corsaro  D, Vallassina  M, Venditti  D. Increasing diversity within Chlamydiae. Crit Rev Microbiol. 2003;29:3778. DOIPubMedGoogle Scholar
  27. Corsaro  D, Venditti  D. Emerging chlamydial infections. Crit Rev Microbiol. 2004;30:75106. DOIPubMedGoogle Scholar
  28. Kostanjsek  R, Stras  J, Drobne  D, Avgustin  G. “Candidatus Rhabdochlamydia porcellionis,” an intracellular bacterium from the hepatopancreas of the terrestrial isopod Porcellio scaber (Crustacea: Isopoda). Int J Syst Evol Microbiol. 2004;54:5439. DOIPubMedGoogle Scholar
  29. Thao  ML, Baumann  L, Hess  JM, Falk  BW, Ng  JCK, Gullan  PJ, Phylogenetic evidence for two insect-associated chlamydia of the family Simkaniaceae. Curr Microbiol. 2003;47:4650. DOIPubMedGoogle Scholar
  30. Fritsche  TR, Horn  M, Wagner  M, Herwig  RP, Schleifer  K-H, Gautom  RK. Phylogenetic diversity among geographically dispersed endosymbionts recovered from clinical and environmental isolates of Acanthamoeba spp. Appl Environ Microbiol. 2000;66:26139. DOIPubMedGoogle Scholar
  31. Horn  M, Collingro  A, Schmitz-Esser  S, Beier  CL, Puckhold  U, Fartmann  B, Illuminating the evolutionary history of chlamydiae. Science. 2004;304:72830. DOIPubMedGoogle Scholar
  32. Henning  K, Schares  G, Granzow  H, Polster  U, Hartmann  M, Hotzel  H, Neospora caninum and Waddlia chondrophila strain 2032/99 in a septic stillborn calf. Vet Microbiol. 2002;85:28592. DOIPubMedGoogle Scholar
  33. Bodett  TJ, Viggers  K, Warren  K, Swan  R, Conaghty  S, Sims  C, Wide range of Chlamydiale types detected in native Australian mammals. Vet Microbiol. 2003;96:17787. DOIPubMedGoogle Scholar
  34. Longbottom  D, Coulter  LJ. Animal chlamydioses and zoonotic implications. J Comp Pathol. 2003;128:21744. DOIPubMedGoogle Scholar
  35. Dilbeck-Robertson  P, McAllister  MM, Bradway  D, Evermann  JF. Results of a new serologic test suggest an association of Waddlia chondrophila with bovine abortion. J Vet Diagn Invest. 2003;15:5689.PubMedGoogle Scholar
  36. Friedman  MG, Dvoskin  B, Kahane  S. Infections with chlamydia-like microorganism Simkania negevensis, a possible emerging pathogen. Microbes Infect. 2003;5:10139. DOIPubMedGoogle Scholar
  37. Birtles  RJ, Rowbotham  TJ, Storey  C, Marrie  TJ, Raoult  D. Chlamydia-like obligate parasite of free living amoebae. Lancet. 1997;349:9256. DOIPubMedGoogle Scholar
  38. Michel  R, Steinert  M, Zoller  L, Hauroder  B, Henning  K. Free-living amoebae may serve as hosts for the Chlamydia-like bacterium Waddlia chondrophila isolated from an aborted bovine foetus. Acta Protozool. 2004;43:3742.
  39. Kahane  S, Dvoskin  B, Mathias  M, Friedmann  MG. Infection of Acanthamoeba polyphaga with Simkania negevensis and S. negevensis survival within amoebal cysts. Appl Environ Microbiol. 2001;67:478995. DOIPubMedGoogle Scholar
  40. Essig  A, Heinemann  M, Simnacher  U, Marre  R. Infection of Acanthamoeba castellani by Chlamydia pneumoniae. Appl Environ Microbiol. 1997;63:13969.PubMedGoogle Scholar

Main Article

Page created: April 27, 2011
Page updated: April 27, 2011
Page reviewed: April 27, 2011
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external