Volume 11, Number 6—June 2005
Research
Emergence and Spread of Streptococcus pneumoniae with erm(B) and mef(A) Resistance
Table 4
Drug | % susceptibility* | ||
---|---|---|---|
Susceptible | Intermediate | Resistant | |
Amoxicillin–clavulanate† | 40.6 | 22.0 | 37.4 |
Azithromycin | 0 | 0.1 | 99.9 |
Cefuroxime | 5.7 | 1.7 | 92.6 |
Clarithromycin | 0 | 0 | 100 |
Co-trimoxazole | 3.4 | 1.2 | 95.4 |
Erythromycin | 0 | 0 | 100 |
Levofloxacin | 98.6 | 0 | 1.4 |
Linezolid | 99.8 | 0 | 0.2 |
Penicillin | 1.5 | 6.7 | 91.8 |
Telithromycin | 99.0 | 0.9 | 0.1 |
Tetracycline | 2.7 | 0.7 | 96.6 |
*Susceptibility was defined according to Clinical and Laboratory Standards Institute interpretive criteria (25).
†Amoxicillin alone was not tested; however, susceptibility can be extrapolated from the amoxicillin-clavulanate results.
References
- Hoberman A, Marchant CD, Kaplan SL, Feldman S. Treatment of acute otitis media. Consensus recommendations. Clin Pediatr. 2002;41:373–90. DOIPubMedGoogle Scholar
- Niederman MS, Mandell LA, Anzueto A, Bass JB, Broughton WA, Campbell GD, ; American Thoracic Society. Guidelines for the management of adults with community-acquired pneumonia. Diagnosis, assessment of severity, antimicrobial therapy, and prevention. Am J Respir Crit Care Med. 2001;163:1730–54.PubMedGoogle Scholar
- Ball P. Epidemiology of chronic bronchitis and its exacerbations. Chest. 1995;108(Suppl):43S–52S. DOIPubMedGoogle Scholar
- Anon JB, Jacobs MR, Poole MD, Ambrose PG, Benninger MS, Hadley JA, Antimicrobial treatment guidelines for acute bacterial rhinosinusitis. Otolaryngol Head Neck Surg. 2004;130(Suppl):1–45.PubMedGoogle Scholar
- Doern GV, Pfaller MA, Kugler K, Freeman J, Jones RN. Prevalence of antimicrobial resistance among respiratory tract isolates of Streptococcus pneumoniae in North America: 1997 results from the SENTRY antimicrobial surveillance program. Clin Infect Dis. 1998;27:764–70. DOIPubMedGoogle Scholar
- Doern GV, Heilmann KP, Huynh HK, Rhomberg PR, Coffman SL, Brueggemann AB. Antimicrobial resistance among clinical isolates of Streptococcus pneumoniae in the United States during 1999–2000, including a comparison of resistance rates since 1994–1995. Antimicrob Agents Chemother. 2001;45:1721–9. DOIPubMedGoogle Scholar
- Hoban D, Waites K, Felmingham D. Antimicrobial susceptibility of community-acquired respiratory tract pathogens in North America in 1999–2000: findings of the PROTEKT surveillance study. Diagn Microbiol Infect Dis. 2003;45:251–9. DOIPubMedGoogle Scholar
- Karlowsky JA, Thornsberry C, Critchley IA, Jones ME, Evangelista AT, Noel GJ, Susceptibilities to levofloxacin in Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis clinical isolates from children: results from 2000–2001 and 2001–2002 TRUST studies in the United States. Antimicrob Agents Chemother. 2003;47:1790–7. DOIPubMedGoogle Scholar
- Doern GV, Brown SD. Antimicrobial susceptibility among community-acquired respiratory tract pathogens in the USA: data from PROTEKT US 2000–2001. J Infect. 2004;48:56–65. DOIPubMedGoogle Scholar
- Whitney CG, Farley MM, Hadler J, Harrison LH, Lexau C, Reingold A, Increasing prevalence of multidrug-resistant Streptococcus pneumoniae in the United States. N Engl J Med. 2000;343:1917–24. DOIPubMedGoogle Scholar
- Felmingham D, Grüneberg RN. The Alexander Project 1996–1997: latest susceptibility data from this international study of bacterial pathogens from community-acquired lower respiratory tract infections. J Antimicrob Chemother. 2000;45:191–203. DOIPubMedGoogle Scholar
- Hoban DJ, Doern GV, Fluit AC, Roussel-Delvallez M, Jones RN. Worldwide prevalence of antimicrobial resistance in Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis in the SENTRY Antimicrobial Surveillance Program, 1997–1999. Clin Infect Dis. 2001;32(Suppl 2):S81–93. DOIPubMedGoogle Scholar
- Felmingham D, Reinert RR, Hirakata Y, Rodloff A. Increasing prevalence of antimicrobial resistance among isolates of Streptococcus pneumoniae from the PROTEKT surveillance study, and comparative in vitro activity of the ketolide, telithromycin. J Antimicrob Chemother. 2002;50(Suppl 2):25–37. DOIPubMedGoogle Scholar
- Farrell DJ, Morrissey I, Bakker S, Felmingham D. Molecular characterization of macrolide resistance mechanisms among Streptococcus pneumoniae and Streptococcus pyogenes isolated from the PROTEKT 1999–2000 study. J Antimicrob Chemother. 2002;50(Suppl 2):39–47. DOIPubMedGoogle Scholar
- Farrell DJ, Morrissey I, Bakker S, Morris L, Buckridge S, Felmingham D. Molecular epidemiology of multiresistant Streptococcus pneumoniae with both erm(B) and mef(A)-mediated macrolide resistance. J Clin Microbiol. 2004;42:764–8. DOIPubMedGoogle Scholar
- Leclercq R, Courvalin P. Bacterial resistance to macrolide, lincosamide, and streptogramin antibiotics by target modification. Antimicrob Agents Chemother. 1991;35:1267–72.PubMedGoogle Scholar
- Sutcliffe J. Resistance to macrolides mediated by efflux mechanism. Curr Opin Anti-Infect Investig Drugs. 1999;1:403–12.
- Corso A, Severina EP, Petruk VF, Mauritz TR, Tomasz A. Molecular characterization of penicillin-resistant Streptococcus pneumoniae isolates causing respiratory disease in the United States. Microb Drug Resist. 1998;4:325–37. DOIPubMedGoogle Scholar
- McGee L, Klugman KP, Wasas A, Capper T, Brink A; Antibiotic Surveillance Forum of South Africa. Serotype 19F multiresistant pneumococcal clone harboring two erythromycin resistance determinants [erm(B) and mef(A)] in South Africa. Antimicrob Agents Chemother. 2001;45:1595–8. DOIPubMedGoogle Scholar
- McGee L, Wang H, Wasas A, Huebner R, Chen M, Klugman KP. Prevalence of serotypes and molecular epidemiology of Streptococcus pneumoniae strains isolated from children in Beijing, China: identification of two novel multiply-resistant clones. Microb Drug Resist. 2001;7:55–63. DOIPubMedGoogle Scholar
- Waites KB, Jones KE, Kim KH, Moser SA, Johnson CN, Hollingshead SK, Dissemination of macrolide-resistant Streptococcus pneumoniae isolates containing both erm(B) and mef(A) in South Korea. J Clin Microbiol. 2003;41:5787–91. DOIPubMedGoogle Scholar
- Ko KS, Song JH. Evolution of erythromycin-resistant Streptococcus pneumoniae from Asian countries that contains erm(B) and mef(A) genes. J Infect Dis. 2004;190:739–47. DOIPubMedGoogle Scholar
- Felmingham D. The need for antimicrobial resistance surveillance. J Antimicrob Chemother. 2002;50(Suppl 2):1–7. DOIPubMedGoogle Scholar
- Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Document M07‑A6. Wayne (PA): The Institute; 2003.
- Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; 15th informational supplement. Document M100-S15. Wayne (PA): The Institute; 2005.
- Farrell DJ, Morrissey I, Bakker S, Felmingham D. Detection of macrolide resistance mechanisms in Streptococcus pneumoniae and Streptococcus pyogenes using a multiplex rapid cycle PCR with microwell-format probe hybridization. J Antimicrob Chemother. 2001;48:541–4. DOIPubMedGoogle Scholar
- Shackcloth J, Williams L, Farrell DJ. Streptococcus pneumoniae and Streptococcus pyogenes isolated from a paediatric population in Great Britain and Ireland: the in vitro activity of telithromycin versus comparators. J Infect. 2004;48:229–35. DOIPubMedGoogle Scholar
- Jolley KA, Feil EJ, Chan MS, Maiden MC. Sequence type analysis and recombinational tests (START). Bioinformatics. 2001;17:1230–1. DOIPubMedGoogle Scholar
- Pneumococcal Molecular Epidemiology Network [homepage on the Internet]. [cited 2004 Nov 22]. Available from http://www.sph.emory.edu/PMEN/index.html
- Garau J. The hidden impact of antibacterial resistance in respiratory tract infection. Clinical failures: the tip of the iceberg? Respir Med. 2001;95(Suppl A):S5–11. DOIPubMedGoogle Scholar
- Lonks JR. What is the clinical impact of macrolide resistance? Curr Infect Dis Rep. 2004;6:7–12. DOIPubMedGoogle Scholar
- Richter SS, Heilmann KP, Coffman SL, Huynh HK, Brueggemann AB, Pfaller MA, The molecular epidemiology of penicillin-resistant Streptococcus pneumoniae in the United States, 1994–2000. Clin Infect Dis. 2002;34:330–9. DOIPubMedGoogle Scholar
- Bean DC, Klena JD. Prevalence of erm(A) and mef(B) erythromycin resistance determinants in isolates of Streptococcus pneumoniae from New Zealand. J Antimicrob Chemother. 2002;50:597–9. DOIPubMedGoogle Scholar
- Weiss K, Guilbault C, Cortes L, Restieri C, Low DE; EQUERE Project. Genotypic characterization of macrolide-resistant strains of Streptococcus pneumoniae isolated in Quebec, Canada, and in vitro activity of ABT-773 and telithromycin. J Antimicrob Chemother. 2002;50:403–6. DOIPubMedGoogle Scholar
- Montanari MP, Mingoia M, Cochetti I, Varaldo PE. Phenotypes and genotypes of erythromycin-resistant pneumococci in Italy. J Clin Microbiol. 2003;41:428–31. DOIPubMedGoogle Scholar
- Amezaga MR, Carter PE, Cash P, McKenzie H. Molecular epidemiology of erythromycin resistance in Streptococcus pneumoniae isolates from blood and noninvasive sites. J Clin Microbiol. 2002;40:3313–8. DOIPubMedGoogle Scholar
- Kaplan SL, Mason EO Jr, Wald ER, Schutze GE, Bradley JS, Tan TQ, Decrease of invasive pneumococcal infections in children among 8 children's hospitals in the United States after the introduction of the 7-valent pneumococcal conjugate vaccine. Pediatrics. 2004;113:443–9. DOIPubMedGoogle Scholar
- Black S, Shinefield H, Baxter R, Austrian R, Bracken L, Hansen J, Postlicensure surveillance for pneumococcal invasive disease after use of heptavalent pneumococcal conjugate vaccine in Northern California Kaiser Permanente. Pediatr Infect Dis J. 2004;23:485–9. DOIPubMedGoogle Scholar
- Eskola J, Kilpi T, Palmu A, Jokinen J, Haapakoski J, Herva E, Efficacy of a pneumococcal conjugate vaccine against acute otitis media. N Engl J Med. 2001;344:403–9. DOIPubMedGoogle Scholar
- Ekström N, Åhman H, Verho J, Jokinen J, Väkeväinen M, Kilpi T, Kinetics and avidity of antibodies evoked by heptavalent pneumococcal vaccines PncCRM and PncOMPC in the Finnish otitis media vaccine trial. Infect Immun. 2005;73:369–77. DOIPubMedGoogle Scholar
Page created: April 24, 2012
Page updated: April 24, 2012
Page reviewed: April 24, 2012
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.