Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 11, Number 7—July 2005
Research

Primate-to-Human Retroviral Transmission in Asia

Lisa Jones-Engel*Comments to Author , Gregory A. Engel†, Michael A. Schillaci‡, Aida Rompis§, Artha Putra§, Komang Gde Suaryana§, Agustin Fuentes¶, Brigitte Beer#, Sarah Hicks**, Robert White**, Brenda Wilson**, and Jonathan S. Allan**
Author affiliations: *University of Washington National Primate Research Center, Seattle, Washington, USA; †Swedish/Providence Hospital Family Practice Residency, Seattle, Washington, USA; ‡University of Toronto at Scarborough, Toronto, Ontario, Canada; §Udayana University, Denpasar, Bali, Indonesia; ¶University of Notre Dame, Terre Haute, Indiana, USA; #Southern Research Institute, Frederick, Maryland, USA; **Southwest Foundation for Biomedical Research, San Antonio, Texas, USA

Main Article

Figure 3

Phylogenetic analysis of mitochrondrial (mt) DNA from nonhuman primates and humans. mtDNA was amplified and sequenced from the simian foamy virus–infected person (BH66), 2 human controls (Hu702 and Hu715), M. mulatta (Rh15454, 18511,18512, 18513,18514,18515, 11363, 9649), M. fascicularis (BP2, 4, 5, 6), M. nemestrina (P46), M. tonkeana (P18,39,40), M. maura (P44, 73), M. nigra (P79, M1); M. nigrescens (M27, 28), and M. hecki (M7). The mtDNA tree was created with the neighbor-joining method with

Figure 3. . Phylogenetic analysis of mitochrondrial (mt) DNA from nonhuman primates and humans. mtDNA was amplified and sequenced from the simian foamy virus–infected person (BH66), 2 human controls (Hu702 and Hu715), M. mulatta (Rh15454, 18511,18512, 18513,18514,18515, 11363, 9649), M. fascicularis (BP2, 4, 5, 6), M. nemestrina (P46), M. tonkeana (P18,39,40), M. maura (P44, 73), M. nigra (P79, M1); M. nigrescens (M27, 28), and M. hecki (M7). The mtDNA tree was created with the neighbor-joining method with the Phylip program (DNAdist; Neighbor). Bootstrap replicates were 1,000. Bootstrap values were calculated by using Seqboot, DNAdist, Neighbor, and Consense (PHYLIP programs). Bootstrap values >60% are shown. The mtDNA tree was plotted in Treeview. This analysis suggests that BH66 was of human origin. Although the phylogenetic tree constructed with mtDNA from a variety of monkey samples can be used to distinguish human from monkey mtDNA, a large number of nuclear mtDNA sequences, have evolved as pseudogenes (36). These sequences can be highly divergent from mtDNA and resulted in some ambiguity as mtDNA amplified from several monkeys did not group with other members of the same species. Because of the nature and variability of these sequences, definitive conclusions about mtDNA phylogenies could not be determined; however, mtDNA trees were still useful for determining the origin of mtDNA material.

Main Article

References
  1. Wolfe  ND, Escalante  AA, Karesh  WB, Kilbourne  A, Spielman  A, Lal  AA. Wild primate populations in emerging infectious disease research: The missing link? Emerg Infect Dis. 1998;4:14958. DOIPubMedGoogle Scholar
  2. Weiss  RA. Cross-species infections. Curr Top Microbiol Immunol. 2003;278:4771. DOIPubMedGoogle Scholar
  3. Gao  F, Bailes  E, Robertson  DL, Chen  Y, Rodenburg  CM, Michael  SF, Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature. 1999;397:43641. DOIPubMedGoogle Scholar
  4. Sharp  PM, Bailes  E, Chaudhuri  RR, Rodenburg  CM, Santiago  MO, Hahn  BH. The origins of acquired immune deficiency viruses: where and when? Philos Trans R Soc Lond B Biol Sci. 2001;356:86776. DOIPubMedGoogle Scholar
  5. Murphy  FA. A perspective on emerging zoonoses. In: Burroughs T, Knobler S, Leberberg J, editors. The emergence of zoonotic diseases: Understanding the impact on animal and human health. Washington: National Academy Press; 2002. p. 1–10.
  6. Khabbaz  RF, Heneine  W, George  JR, Parekh  B, Rowe  T, Woods  T, Brief report: infection of a laboratory worker with simian immunodeficiency virus. N Engl J Med. 1994;330:1727. DOIPubMedGoogle Scholar
  7. Gessain  A, Mahieux  R. Epidemiology, origin and genetic diversity of HTLV-1 retrovirus and STLV-1 simian affiliated retrovirus. Bull Soc Pathol Exot. 2000;93:16371.PubMedGoogle Scholar
  8. Vandamme  AM, Salemi  M, Desmyter  J. The simian origins of the pathogenic human T-cell lymphotropic virus type I. Trends Microbiol. 1998;6:47783. DOIPubMedGoogle Scholar
  9. Gessain  A, Vernant  JC, Barin  F, Maurs  L, Gout  O, Calendar  A, Antibodies to human T-lymphotropic virus type-1 in patients with tropical spastic paraparesis. Lancet. 1985;2:40710. DOIPubMedGoogle Scholar
  10. Lerche  NW, Switzer  WM, Yee  JL, Shanmugam  V, Rosenthal  AN, Chapman  LE, Evidence of infection with simian type D retrovirus in persons occupationally exposed to nonhuman primates. J Virol. 2001;75:17839. DOIPubMedGoogle Scholar
  11. Switzer  WM, Bhullar  V, Shanmugam  V, Cong  M, Parekh  B, Lerche  NW, Frequent simian foamy virus infection in persons occupationally exposed to nonhuman primates. J Virol. 2004;78:27809. DOIPubMedGoogle Scholar
  12. Wolfe  ND, Switzer  WM, Carr  JK, Bhullar  VB, Shanmugam  V, Tamoufe  U, Naturally acquired simian retrovirus infections among Central African hunters. Lancet. 2004;363:9327. DOIPubMedGoogle Scholar
  13. Brooks  JI, Erling  R, Pilon  RG, Smith  JW, Switzer  WM, Sandstrom  PA. Cross-species retroviral transmission from macaques to human beings. Lancet. 2002;360:3878. DOIPubMedGoogle Scholar
  14. Sandstrom  PA, Phan  KO, Switzer  WM, Fredeking  T, Chapman  L, Heneine  W, Simian foamy virus infection among zoo keepers. Lancet. 2000;355:5512. DOIPubMedGoogle Scholar
  15. Calattini  S, Mauclere  P, Torevoye  P, Froment  A, Saib  A, Gessain  A. Interspecies transmission of simian foamy viruses from chimpanzees and gorillas to Bantous and Pygmees hunters in Southern Cameroon. Proceedings of the 5th International Foamy Virus Conference; 2004 Jul 9–11;Wuerzburg, Germany.
  16. Renne  R, Friedl  E, Schweizer  M, Fleps  U, Turek  R, Neumann-Haefelin  D. Genomic organization and expression of simian foamy virus type 3 (SFV-3). Virology. 1992;186:597608. DOIPubMedGoogle Scholar
  17. Mergia  A, Shaw  KE, Pratt-Lowe  E, Barry  PA, Luciw  PA. Simian foamy virus type 1 is a retrovirus which encodes a transcriptional transactivator. J Virol. 1990;64:3598604.PubMedGoogle Scholar
  18. Hussain  AI, Shanmugam  V, Bhullar  VB, Beer  BE, Vallet  D, Gautier-Hion  A, Screening for simian foamy virus infection by using a combined antigen Western blot assay: evidence for a wide distribution among Old World primates and identification of four new divergent viruses. Virology. 2003;309:24857. DOIPubMedGoogle Scholar
  19. Broussard  SR, Comuzzie  AG, Leighton  KL, Leland  MM, Whitehead  EM, Allan  JS. Characterization of new simian foamy viruses from African nonhuman primates. Virology. 1997;237:34959. DOIPubMedGoogle Scholar
  20. Herchenroder  O, Renne  R, Loncar  D, Cobb  EK, Murthy  KK, Schneider  J, Isolation, cloning, and sequencing of simian foamy viruses from chimpanzees (SFVcpz): high homology to human foamy virus (HFV). Virology. 1994;201:18799. DOIPubMedGoogle Scholar
  21. Allan  JS, Short  M, Taylor  ME, Su  S, Hirsch  VM, Johnson  PR, Species-specific diversity among simian immunodeficiency viruses from African green monkeys. J Virol. 1991;65:281628.PubMedGoogle Scholar
  22. Beer  BE, Bailes  E, Goeken  R, Dapolito  G, Coulibaly  C, Norley  SG, Simian immunodeficiency virus (SIV) from sun-tailed monkeys (Cercopithecus solatus): evidence for host-dependent evolution of SIV within the C. lhoesti superspecies. J Virol. 1999;73:773444.PubMedGoogle Scholar
  23. Sharp  PM, Bailes  E, Gao  F, Beer  BE, Hirsch  VM, Hahn  BH. Origins and evolution of AIDS viruses: estimating the time-scale. Biochem Soc Trans. 2000;28:27582.PubMedGoogle Scholar
  24. Blewett  EL, Black  DH, Lerche  NW, White  G, Eberle  R. Simian foamy virus infections in a baboon breeding colony. Virology. 2000;278:18393. DOIPubMedGoogle Scholar
  25. Heberling  RL, Kalter  SS. Isolation of foamy viruses from baboon (Papio cynocephalus) tissues. Am J Epidemiol. 1975;102:259.PubMedGoogle Scholar
  26. Falcone  V, Leupold  J, Clotten  J, Urbanyi  E, Herchenroder  O, Spatz  W, Sites of simian foamy virus persistence in naturally infected African green monkeys: latent provirus is ubiquitous, whereas viral replication is restricted to the oral mucosa. Virology. 1999;257:714. DOIPubMedGoogle Scholar
  27. Lerche  NW, Osborn  KG, Marx  PA, Prahalda  S, Maul  DH, Lowenstine  LJ, Inapparent carriers of simian AIDS type D retrovirus and disease transmission in saliva. J Natl Cancer Inst. 1986;77:48996.PubMedGoogle Scholar
  28. Meiering  CD, Linial  ML. Historical perspective of foamy virus epidemiology and perspective. Clin Microbiol Rev. 2001;14:16576. DOIPubMedGoogle Scholar
  29. Khan  AS, Sears  JF, Muller  J, Galvin  TA, Shahabuddin  M. Sensitive assays for isolation and detection of simian foamy retroviruses. J Clin Microbiol. 1999;37:267886.PubMedGoogle Scholar
  30. Jones-Engel  L, Schillaci  MA, Engel  G. Interaction between humans and nonhuman primates. In Setchell J, Curtis D, editors. Field and laboratory methods in primatology. Cambridge: Cambridge University Press; 2003. p.15–24.
  31. Jones-Engel  L, Engel  GA, Schillaci  MA. An ethnoprimatological assessment of disease transmission among humans and wild and pet macaques on the Indonesian island of Sulawesi. In: Patterson J, editor. Commensalism and conflict: the primate-human interface. Norman (OK): American Society of Primatologists Publications. In press.
  32. Engel  GA, Jones-Engel  L, Schillaci  MA, Suaryana  KG, Putra  A, Fuentes  A, Human exposure to herpesvirus B-seropositive macaques, Bali, Indonesia. Emerg Infect Dis. 2002;8:78995. DOIPubMedGoogle Scholar
  33. Fuentes  A, Southern  M, Suaryana  KG. Monkey forests and human landscapes: is extensive sympatry sustainable for Homo sapiens and Macaca fascicularis in Bali? In: Patterson J, editor. Commensalism and conflict: the primate-human interface. Norman (OK):American Society of Primatologists Publications. In press.
  34. Wheatley  BP. The sacred monkeys of Bali. Long Grove (IL):Waveland Press; 1998.
  35. Poinar  H, Kuch  M, Paabo  S. Molecular analysis of oral polio vaccine samples. Science. 2001;292:7434. DOIPubMedGoogle Scholar
  36. Vartanian  JP, Wain-Hobson  S. Analysis of a library of macaque nuclear mitochondrial sequences confirms macaque origin of divergent sequences from old oral polio vaccine samples. Proc Natl Acad Sci U S A. 2002;99:75669. DOIPubMedGoogle Scholar
  37. Sponsel  LE. Monkey business? The conservation implications of macaque ethnoprimatology in southern Thailand. In: Fuentes A, Wolfe L, editors. Primates face to face: the conservation implications of human-nonhuman primate interconnections. New York: Cambridge University Press; 2002. p. 288–309.
  38. Boneva  RS, Grindon  AJ, Orton  SL, Switzer  WM, Shanmugam  V, Hussain  AI, Simian foamy virus infection in a blood donor. Transfusion. 2002;42:88691. DOIPubMedGoogle Scholar
  39. Allan  JS, Broussard  SR, Michaels  MG, Starzl  TE, Leighton  KL, Whitehead  EM, Amplification of simian retroviral sequences from human recipients of baboon liver transplants. AIDS Res Hum Retroviruses. 1998;14:8214. DOIPubMedGoogle Scholar

Main Article

Page created: April 23, 2012
Page updated: April 23, 2012
Page reviewed: April 23, 2012
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external