Volume 11, Number 7—July 2005
Research
Survey of Tickborne Infections in Denmark
Figure 1
References
- Kovats RS, Haines A, Stanwell-Smith R, Martens P, Menne B, Bertollini R. Climate change and human health in Europe. BMJ. 1999;318:1682–5. DOIPubMedGoogle Scholar
- Skarphedinsson S, Sogaard P, Pedersen C. Seroprevalence of human granulocytic ehrlichiosis in high-risk groups in Denmark. Scand J Infect Dis. 2001;33:206–10. DOIPubMedGoogle Scholar
- Nielsen H, Fournier PE, Pedersen IS, Krarup H, Ejlertsen T, Raoult D. Serological and molecular evidence of Rickettsia helvetica in Denmark. Scand J Infect Dis. 2004;36:559–63. DOIPubMedGoogle Scholar
- World Health Organization. The vector-borne human infections of Europe—their distribution and burden on public health [monograph on the Internet]. 2004 [cited 2005 May 2]. Available from http://www.euro.who.int/malaria/publications/20020611_4
- Randolph SE. The shifting landscape of tick-borne zoonoses: tick-borne encephalitis and Lyme borreliosis in Europe. Philos Trans R Soc Lond B Biol Sci. 2001;356:1045–56. DOIPubMedGoogle Scholar
- Freundt EA. The Western boundary of endemic tick-borne encephalitis in southern Scandinavia. APMIS. 1963;57:87–103.
- Webster P, Frandsen F. Prevalence of antibodies to Borrelia burgdorferi in Danish deer. APMIS. 1994;102:287–90. DOIPubMedGoogle Scholar
- Jensen PM, Jespersen JB. Five decades of tick-man interaction in Denmark—an analysis. Exp Appl Acarol. 2005;35:131–46. DOIPubMedGoogle Scholar
- Inokuma H, Raoult D, Brouqui P. Detection of Ehrlichia platys DNA in brown dog ticks (Rhipicephalus sanguineus) in Okinawa Island, Japan. J Clin Microbiol. 2000;38:4219–21.PubMedGoogle Scholar
- Courtney JW, Kostelnik LM, Zeidner NS, Massung RF. Multiplex real-time PCR for detection of Anaplasma phagocytophilum and Borrelia burgdorferi. J Clin Microbiol. 2004;42:3164–8. DOIPubMedGoogle Scholar
- Jensen PM. Seasonal and geographical abundance of Ixodes ricinus and Lyme borreliosis risk assessment in Denmark [dissertation]. Zoology Section, Department of Ecology. Fredriksberg: The Royal Veterinary and Agricultural University; 2000.
- Matuschka FR, Heiler M, Eiffert H, Fischer P, Lotter H, Spielman A. Diversionary role of hoofed game in the transmission of Lyme disease spirochetes. Am J Trop Med Hyg. 1993;48:693–9.PubMedGoogle Scholar
- Pichon B, Mousson L, Figureau C, Rodhain F, Perez-Eid C. Density of deer in relation to the prevalence of Borrelia burgdorferi s.l. in Ixodes ricinus nymphs in Rambouillet Forest, France. Exp Appl Acarol. 1999;23:267–75. DOIPubMedGoogle Scholar
- Jensen PM, Hansen H, Frandsen F. Spatial risk assessment for Lyme borreliosis in Denmark. Scand J Infect Dis. 2000;32:545–50. DOIPubMedGoogle Scholar
- Jaenson TG, Talleklint L. Incompetence of roe deer as reservoirs of the Lyme borreliosis spirochete. J Med Entomol. 1992;29:813–7.PubMedGoogle Scholar
- Gray JS, Hayden TJ, Casey S, Kirstein F, Rijpkema S, Curtin S. A Lyme disease serosurvey of deer in Irish national parks. Proc R Ir Acad B. 1996;96B:27–32.
- Schouls LM, Van De Pol I, Rijpkema SG, Schot CS. Detection and identification of Ehrlichia, Borrelia burgdorferi sensu lato, and Bartonella species in Dutch Ixodes ricinus ticks. J Clin Microbiol. 1999;37:2215–22.PubMedGoogle Scholar
- Sanogo YO, Zeaiter Z, Caruso G, Merola F, Shpynov S, Brouqui P, Bartonella henselae in Ixodes ricinus ticks (Acari: Ixodida) removed from humans, Belluno province, Italy. Emerg Infect Dis. 2003;9:329–32.PubMedGoogle Scholar
- Chang CC, Chomel BB, Kasten RW, Romano V, Tietze N. Molecular evidence of Bartonella spp. in questing adult Ixodes pacificus ticks in California. J Clin Microbiol. 2001;39:1221–6. DOIPubMedGoogle Scholar
- McGill S, Wesslen L, Hjelm E, Holmberg M, Rolf C, Friman G. Serological and epidemiological analysis of the prevalence of Bartonella spp. Antibodies in Swedish elite orienteers 1992–93. Scand J Infect Dis. 2001;33:423–8. DOIPubMedGoogle Scholar
- Eskow E, Rao RV, Mordechai E. Concurrent infection of the central nervous system by Borrelia burgdorferi and Bartonella henselae: evidence for a novel tick-borne disease complex. Arch Neurol. 2001;58:1357–63. DOIPubMedGoogle Scholar
- Alberdi MP, Walker AR, Urquhart KA. Field evidence that roe deer (Capreolus capreolus) are a natural host for Ehrlichia phagocytophila. Epidemiol Infect. 2000;124:315–23. DOIPubMedGoogle Scholar
- Stuen S, Akerstedt J, Bergstrom K, Handeland K. Antibodies to granulocytic Ehrlichia in moose, red deer, and roe deer in Norway. J Wildl Dis. 2002;38:1–6.PubMedGoogle Scholar
- Petrovec M, Bidovec A, Sumner JW, Nicholson WL, Childs JE, Avsic-Zupanc T. Infection with Anaplasma phagocytophila in cervids from Slovenia: evidence of two genotypic lineages. Wien Klin Wochenschr. 2002;114:641–7.PubMedGoogle Scholar
- Hulinska D, Langrova K, Pejcoch M, Pavlasek I. Detection of Anaplasma phagocytophilum in animals by real-time polymerase chain reaction. APMIS. 2004;112:239–47. DOIPubMedGoogle Scholar
- Strle F. Human granulocytic ehrlichiosis in Europe. Int J Med Microbiol. 2004;293(Suppl 37):27–35.PubMedGoogle Scholar
- Sanogo YO, Parola P, Shpynov S, Camicas JL, Brouqui P, Caruso G, Genetic diversity of bacterial agents detected in ticks removed from asymptomatic patients in northeastern Italy. Ann N Y Acad Sci. 2003;990:182–90. DOIPubMedGoogle Scholar
- Lindgren E, Gustafson R. Tick-borne encephalitis in Sweden and climate change. Lancet. 2001;358:16–8. DOIPubMedGoogle Scholar
- Lindgren E, Talleklint L, Polfeldt T. Impact of climatic change on the northern latitude limit and population density of the disease-transmitting European tick Ixodes ricinus. Environ Health Perspect. 2000;108:119–23. DOIPubMedGoogle Scholar
- World Health Organization. Early human health effects of climate change and stratospheric ozone depletion in Europe [monograph on the Internet]. 1999 Apr 9 [cited 2005 May 2]. Available from http://www.euro.who.int/document/gch/climate03.pdf
- Randolph SE, Rogers DJ. Fragile transmission cycles of tick-borne encephalitis virus may be disrupted by predicted climate change. Proc Biol Sci. 2000;267:1741–4. DOIPubMedGoogle Scholar
- Jensen PM, Skarphedinsson S, Semenov A. Densities of the tick (Ixodes ricinus) and coexistence of the Louping ill virus and tick borne encephalitis on the island of Bornholm [article in Danish]. Ugeskr Laeger. 2004;166:2563–5.PubMedGoogle Scholar
Page created: April 24, 2012
Page updated: April 24, 2012
Page reviewed: April 24, 2012
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.