Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 12, Number 1—January 2006
THEME ISSUE
Influenza
Pathogenesis

Cell-mediated Protection in Influenza Infection

Paul G. Thomas*, Rachael Keating*, Diane J. Hulse-Post*, and Peter C. Doherty*Comments to Author 
Author affiliations: *St. Jude Children's Research Hospital, Memphis, Tennessee, USA

Main Article

Table

Conservation of human NP and M1 epitopes between H1N1 PR8 and 3 human isolates of H5N1 viruses (A/Hong Kong/156/1997, A/Hong Kong/213/2003, and A/Vietnam/1203/2004)*

Epitope HLA restriction PR8 sequence Conservation
NP 383–391 B*2705 SRYWAIRTR 3/3 identical
NP 418–426 B*3501 LPFDRTTIM 0/3 identical
NP 44–52 A*01 CTELKLSDY 2/3 identical (156 Y9Q)
NP 265–273 A*03 ILRGSVAHK 3/3 identical
NP 188–198 A*1101 TMVMELVRMIK 3/3 V7I mutation
NP 380–388 B*08 ELRSRYWAI 3/3 identical
NP 174–184 B*2705 RRSGAAGAAVK 2/3 identical (156 V10I)
M1 58–66 A*0201 GILGFVFTL 3/3 identical
M1 27–35 A*03 RLEDVFAGK 2/3 mutated (1203, 213 both R1K)
M1 13–21 A*1101 SIIPSGPLK 3/3 identical

*All 3 isolates were compared to the mouse-adapted PR8 strain and differences are reported. Sequences obtained from the Influenza Sequence Database (55). NP, nucleoprotein; HLA, human leukocyte antigen.

Main Article

References
  1. Murphy  BR, Webster  RG. Orthomyxoviruses. In: Fields BN, Knipe DM, Howley PM, Chanock RM, Melnick JL, Monath TP, et al., editors. Fields virology. 3rd ed. Philadelphia: Lippincott-Raven Publishers; 1996. p. 1397–445.
  2. Allan  W, Tabi  Z, Cleary  A, Doherty  PC. Cellular events in the lymph node and lung of mice with influenza. Consequences of depleting CD4+ T cells. J Immunol. 1990;144:39806.PubMedGoogle Scholar
  3. Bender  BS, Croghan  T, Zhang  L, Small  PA Jr. Transgenic mice lacking class I major histocompatibility complex-restricted T cells have delayed viral clearance and increased mortality after influenza virus challenge. J Exp Med. 1992;175:11435. DOIPubMedGoogle Scholar
  4. Hou  S, Doherty  PC, Zijlstra  M, Jaenisch  R, Katz  JM. Delayed clearance of Sendai virus in mice lacking class I MHC-restricted CD8+ T cells. J Immunol. 1992;149:131925.PubMedGoogle Scholar
  5. Graham  MB, Braciale  TJ. Resistance to and recovery from lethal influenza virus infection in B lymphocyte-deficient mice. J Exp Med. 1997;186:20638. DOIPubMedGoogle Scholar
  6. Epstein  SL, Lo  CY, Misplon  JA, Bennink  JR. Mechanism of protective immunity against influenza virus infection in mice without antibodies. J Immunol. 1998;160:3227.PubMedGoogle Scholar
  7. Taylor  PM, Askonas  BA. Influenza nucleoprotein-specific cytotoxic T-cell clones are protective in vivo. Immunology. 1986;58:41720.PubMedGoogle Scholar
  8. Andrew  ME, Coupar  BE. Efficacy of influenza haemagglutinin and nucleoprotein as protective antigens against influenza virus infection in mice. Scand J Immunol. 1988;28:815. DOIPubMedGoogle Scholar
  9. Tite  JP, Hughes-Jenkins  C, O'Callaghan  D, Dougan  G, Russell  SM, Gao  XM, Anti-viral immunity induced by recombinant nucleoprotein of influenza A virus. II. Protection from influenza infection and mechanism of protection. Immunology. 1990;71:2027.PubMedGoogle Scholar
  10. Webster  RG, Kawaoka  Y, Taylor  J, Weinberg  R, Paoletti  E. Efficacy of nucleoprotein and haemagglutinin antigens expressed in fowlpox virus as vaccine for influenza in chickens. Vaccine. 1991;9:3038. DOIPubMedGoogle Scholar
  11. Moskophidis  D, Kioussis  D. Contribution of virus-specific CD8+ cytotoxic T cells to virus clearance or pathologic manifestations of influenza virus infection in a T cell receptor transgenic mouse model. J Exp Med. 1998;188:22332. DOIPubMedGoogle Scholar
  12. Lawrence  CW, Braciale  TJ. Activation, differentiation, and migration of naive virus-specific CD8+ T cells during pulmonary influenza virus infection. J Immunol. 2004;173:120918.PubMedGoogle Scholar
  13. Tripp  RA, Sarawar  SR, Doherty  PC. Characteristics of the influenza virus-specific CD8+ T cell response in mice homozygous for disruption of the H-2lAb gene. J Immunol. 1995;155:29559.PubMedGoogle Scholar
  14. Cerwenka  A, Morgan  TM, Dutton  RW. Naive, effector, and memory CD8 T cells in protection against pulmonary influenza virus infection: homing properties rather than initial frequencies are crucial. J Immunol. 1999;163:553543.PubMedGoogle Scholar
  15. Lawrence  CW, Ream  RM, Braciale  TJ. Frequency, specificity, and sites of expansion of CD8+ T cells during primary pulmonary influenza virus infection. J Immunol. 2005;174:533240.PubMedGoogle Scholar
  16. Walker  JA, Molloy  SS, Thomas  G, Sakaguchi  T, Yoshida  T, Chambers  TM, Sequence specificity of furin, a proprotein-processing endoprotease, for the hemagglutinin of a virulent avian influenza virus. J Virol. 1994;68:12138.PubMedGoogle Scholar
  17. Walker  JA, Sakaguchi  T, Matsuda  Y, Yoshida  T, Kawaoka  Y. Location and character of the cellular enzyme that cleaves the hemagglutinin of a virulent avian influenza virus. Virology. 1992;190:27887. DOIPubMedGoogle Scholar
  18. Prendergast  JA, Helgason  CD, Bleackley  RC. A comparison of the flanking regions of the mouse cytotoxic cell proteinase genes. Biochim Biophys Acta. 1992;1131:1928.PubMedGoogle Scholar
  19. Topham  DJ, Tripp  RA, Doherty  PC. CD8+ T cells clear influenza virus by perforin or Fas-dependent processes. J Immunol. 1997;159:5197200.PubMedGoogle Scholar
  20. Townsend  AR, Rothbard  J, Gotch  FM, Bahadur  G, Wraith  D, McMichael  AJ. The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides. Cell. 1986;44:95968. DOIPubMedGoogle Scholar
  21. Belz  GT, Xie  W, Altman  JD, Doherty  PC. A previously unrecognized H-2D(b)-restricted peptide prominent in the primary influenza A virus-specific CD8(+) T-cell response is much less apparent following secondary challenge. J Virol. 2000;74:348693. DOIPubMedGoogle Scholar
  22. Chen  W, Calvo  PA, Malide  D, Gibbs  J, Schubert  U, Bacik  I, A novel influenza A virus mitochondrial protein that induces cell death. Nat Med. 2001;7:130612. DOIPubMedGoogle Scholar
  23. Marshall  DR, Turner  SJ, Belz  GT, Wingo  S, Andreansky  S, Sangster  MY, Measuring the diaspora for virus-specific CD8+ T cells. Proc Natl Acad Sci U S A. 2001;98:63138. DOIPubMedGoogle Scholar
  24. McMichael  AJ, Michie  CA, Gotch  FM, Smith  GL, Moss  B. Recognition of influenza A virus nucleoprotein by human cytotoxic T lymphocytes. J Gen Virol. 1986;67:71926. DOIPubMedGoogle Scholar
  25. Crowe  SR, Miller  SC, Brown  DM, Adams  PS, Dutton  RW, Harmsen  AG, Uneven distribution of MHC class II epitopes within the influenza virus [corrected proof]. Vaccine. Epub 2005 Aug 15.PubMedGoogle Scholar
  26. Belz  GT, Wodarz  D, Diaz  G, Nowak  MA, Doherty  PC. Compromised influenza virus-specific CD8(+)-T-cell memory in CD4(+)-T-cell-deficient mice. J Virol. 2002;76:1238893. DOIPubMedGoogle Scholar
  27. Riberdy  JM, Christensen  JP, Branum  K, Doherty  PC. Diminished primary and secondary influenza virus-specific CD8(+) T-cell responses in CD4-depleted Ig(-/-) mice. J Virol. 2000;74:97625. DOIPubMedGoogle Scholar
  28. Brown  DM, Roman  E, Swain  SL. CD4 T cell responses to influenza infection. Semin Immunol. 2004;16:1717. DOIPubMedGoogle Scholar
  29. Belz  GT, Liu  H, Andreansky  S, Doherty  PC, Stevenson  PG. Absence of a functional defect in CD8+ T cells during primary murine gammaherpesvirus-68 infection of I-A(b-/-) mice. J Gen Virol. 2003;84:33741. DOIPubMedGoogle Scholar
  30. Diebold  SS, Kaisho  T, Hemmi  H, Akira  S, Reis e Sousa  C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science. 2004;303:152931. DOIPubMedGoogle Scholar
  31. Sarawar  SR, Lee  BJ, Reiter  SK, Schoenberger  SP. Stimulation via CD40 can substitute for CD4 T cell function in preventing reactivation of a latent herpesvirus. Proc Natl Acad Sci U S A. 2001;98:63259. DOIPubMedGoogle Scholar
  32. Cardin  RD, Brooks  JW, Sarawar  SR, Doherty  PC. Progressive loss of CD8+ T cell-mediated control of a gamma-herpesvirus in the absence of CD4+ T cells. J Exp Med. 1996;184:86371. DOIPubMedGoogle Scholar
  33. Brooks  JW, Hamilton-Easton  AM, Christensen  JP, Cardin  RD, Hardy  CL, Doherty  PC. Requirement for CD40 ligand, CD4(+) T cells, and B cells in an infectious mononucleosis-like syndrome. J Virol. 1999;73:96504.PubMedGoogle Scholar
  34. Sun  JC, Bevan  MJ. Defective CD8 T cell memory following acute infection without CD4 T cell help. Science. 2003;300:33942. DOIPubMedGoogle Scholar
  35. Christensen  JP, Cardin  RD, Branum  KC, Doherty  PC. CD4(+) T cell-mediated control of a gamma-herpesvirus in B cell-deficient mice is mediated by IFN-gamma. Proc Natl Acad Sci U S A. 1999;96:513540. DOIPubMedGoogle Scholar
  36. Appay  V, Zaunders  JJ, Papagno  L, Sutton  J, Jaramillo  A, Waters  A, Characterization of CD4(+) CTLs ex vivo. J Immunol. 2002;168:59548.PubMedGoogle Scholar
  37. Norris  PJ, Moffett  HF, Yang  OO, Kaufmann  DE, Clark  MJ, Addo  MM, Beyond help: direct effector functions of human immunodeficiency virus type 1-specific CD4(+) T cells. J Virol. 2004;78:884451. DOIPubMedGoogle Scholar
  38. Staska  LM, McGuire  TC, Davies  CJ, Lewin  HA, Baszler  TV. Neospora caninum–infected cattle develop parasite-specific CD4+ cytotoxic T lymphocytes. Infect Immun. 2003;71:32729. DOIPubMedGoogle Scholar
  39. Roman  E, Miller  E, Harmsen  A, Wiley  J, von Andrian  UH, Huston  G, CD4 effector T cell subsets in the response to influenza: heterogeneity, migration, and function. J Exp Med. 2002;196:95768. DOIPubMedGoogle Scholar
  40. Walker  WS, Castrucci  MR, Sangster  MY, Carson  RT, Kawaoka  Y. HEL-Flu: an influenza virus containing the hen egg lysozyme epitope recognized by CD4+ T cells from mice transgenic for an alphabeta TCR. J Immunol. 1997;159:25636.PubMedGoogle Scholar
  41. Chapman  TJ, Castrucci  MR, Padrick  RC, Bradley  LM, Topham  DJ. Antigen-specific and non-specific CD4(+) T cell recruitment and proliferation during influenza infection. Virology. 2005;340:296306. DOIPubMedGoogle Scholar
  42. Cole  GA, Katz  JM, Hogg  TL, Ryan  KW, Portner  A, Woodland  DL. Analysis of the primary T-cell response to Sendai virus infection in C57BL/6 mice: CD4+ T-cell recognition is directed predominantly to the hemagglutinin-neuraminidase glycoprotein. J Virol. 1994;68:686370.PubMedGoogle Scholar
  43. Horimoto  T, Kawaoka  Y. Influenza: lessons from past pandemics, warnings from current incidents. Nat Rev Microbiol. 2005;3:591600. DOIPubMedGoogle Scholar
  44. Riberdy  JM, Flynn  KJ, Stech  J, Webster  RG, Altman  JD, Doherty  PC. Protection against a lethal avian influenza A virus in a mammalian system. J Virol. 1999;73:14539.PubMedGoogle Scholar
  45. Christensen  JP, Doherty  PC, Branum  KC, Riberdy  JM. Profound protection against respiratory challenge with a lethal H7N7 influenza A virus by increasing the magnitude of CD8(+) T-cell memory. J Virol. 2000;74:116906. DOIPubMedGoogle Scholar
  46. O'Neill  E, Krauss  SL, Riberdy  JM, Webster  RG, Woodland  DL. Heterologous protection against lethal A/HongKong/156/97 (H5N1) influenza virus infection in C57BL/6 mice. J Gen Virol. 2000;81:268996.PubMedGoogle Scholar
  47. Cox  RJ, Brokstad  KA, Ogra  P. Influenza virus: immunity and vaccination strategies. Comparison of the immune response to inactivated and live, attenuated influenza vaccines. Scand J Immunol. 2004;59:115. DOIPubMedGoogle Scholar
  48. The World Health Organization Global Influenza Project Surveillance Network. Evolution of H5N1 avian influenza viruses in Asia. Emerg Infect Dis. 2005;11:151521.PubMedGoogle Scholar
  49. Jin  H, Zhou  H, Liu  H, Chan  W, Adhikary  L, Mahmood  K, Two residues in the hemagglutinin of A/Fujian/411/02-like influenza viruses are responsible for antigenic drift from A/Panama/2007/99. Virology. 2005;336:1139. DOIPubMedGoogle Scholar
  50. Ozaki  H, Govorkova  EA, Li  C, Xiong  X, Webster  RG, Webby  RJ. Generation of high-yielding influenza A viruses in African green monkey kidney (Vero) cells by reverse genetics. J Virol. 2004;78:18517. DOIPubMedGoogle Scholar
  51. Cheuk  E, Chamberlain  JW. Strong memory CD8(+) T cell responses against immunodominant and three new subdominant HLA-B27-restricted influenza A CTL epitopes following secondary infection of HLA-B27 transgenic mice. Cell Immunol. 2005;234:11023. DOIPubMedGoogle Scholar
  52. Seo  SH, Peiris  M, Webster  RG. Protective cross-reactive cellular immunity to lethal A/Goose/Guangdong/1/96-like H5N1 influenza virus is correlated with the proportion of pulmonary CD8(+) T cells expressing gamma interferon. J Virol. 2002;76:488690. DOIPubMedGoogle Scholar
  53. Boon  AC, de Mutsert  G, Graus  YM, Fouchier  RA, Sintnicolaas  K, Osterhaus  AD, Sequence variation in a newly identified HLA-B35-restricted epitope in the influenza A virus nucleoprotein associated with escape from cytotoxic T lymphocytes. J Virol. 2002;76:256772. DOIPubMedGoogle Scholar
  54. Berkhoff  EG, de Wit  E, Geelhoed-Mieras  MM, Boon  AC, Symons  J, Fouchier  RA, Functional constraints of influenza a virus epitopes limit escape from cytotoxic T lymphocytes. J Virol. 2005;79:1123946. DOIPubMedGoogle Scholar
  55. Macken  C, Lu  H, Goodman  J, Boykin  L. The value of a database in surveillance and vaccine selection. In: Osterhaus ADME, Cox N, Hampson AW, editors. Options for the control of influenza IV. Amsterdam: Elsevier Science; 2001. p. 103–6.

Main Article

Page created: February 16, 2012
Page updated: February 16, 2012
Page reviewed: February 16, 2012
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external