Volume 12, Number 12—December 2006
Synopsis
Review of Bats and SARS
Table 2
Viruses | Bat species | Location of detection (People’s Republic of China) | Reference | |
---|---|---|---|---|
Group* | Name/strain | |||
G1 | Bat-CoV HKU2 | Rhinolophus sinicus | Hong Kong | (32) |
Bat-CoV HKU6 | Myotis ricketti | Hong Kong | (32) | |
Bat-CoV HKU7 | Miniopterus magnater | Hong Kong | (32) | |
Bat-CoV HKU8 | Miniopterus pusillus M. magnater Miniopterus schreibersii | Hong Kong | (28,32) | |
BtCoV/701/05 | Myotis ricketti | Anhui, Yunnan, Guangdong | (33) | |
BtCoV/821/05 | Myotis ricketti | Jiangxi, Guangxi | (33) | |
BtCOV/821/05 | Scolophlus kuhlii | Hainan | (33) | |
BtCoV/970/06 | Rhinolophus pearsoni Rhinolophus ferrumequinum | Shandong | (33) | |
BtCoV/A773/05 | M. schreibersii | Fujian | (33) | |
BtCoV/A011/05 | M. schreibersii | Anhui, Fujian, Guangxi | (33) | |
G2b | Rp3 | R. pearsoni | Guangxi | (30) |
Rm1 (BtCoV/279/04) | Rhinolophus macrotis | Hubei | (30) | |
Rf1 (BtCoV/273/04) | R. ferrumequinum | Hubei | (30) | |
Bat-SARS-CoV HKU3 | R. sinicus | Hong Kong | (31,32) | |
BtCoV/A1018/06 | R. sinicus | Shandong | (33) | |
BtCoV/279/04 | R, macrotis | Hubei | (33) | |
BtCoV/273/04 | R. ferrumequinum | Hubei | (33) | |
G2c | Bat-CoV HKU4 | Tylonycteris pachypus | Hong Kong | (32) |
Bat-CoV HKU5 | Pipistrellus abramus | Hong Kong | (32) | |
BtCoV/133/05 | T. pachypus | Guangdong | (33) | |
BtCoV/434/05 | Pipistrellus pipistrellus | Hainan | (33) | |
BtCoV/355/05 | P. abramus R. ferrumequinum | Anhui, Henan, Sichuan | (33) |
References
- Peiris JSM, Guan Y, Yuen KY. Severe acute respiratory syndrome. Nat Med. 2004;10:S88–97. DOIPubMedGoogle Scholar
- Liang G, Chen QX, Xu JG, Liu YF, Lim W, Peiris JSM, Laboratory diagnosis of four recent sporadic cases of community-acquired SARS, Guangdong Province, China. Emerg Infect Dis. 2004;10:1774–81.PubMedGoogle Scholar
- Song HD, Tu CC, Zhang GW, Wang SY, Zheng K, Lei LC, Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human. Proc Natl Acad Sci U S A. 2005;102:2430–5. DOIPubMedGoogle Scholar
- Rota PA, Oberste MS, Monroe SS, Nix WA, Campagnoli R, Icenogle JP, Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science. 2003;300:1394–9. DOIPubMedGoogle Scholar
- Marra MA, Jones SJ, Astell CR, Holt RA, Brooks-Wilson A, Butterfield YS, The genome sequence of the SARS-associated coronavirus. Science. 2003;300:1399–404. DOIPubMedGoogle Scholar
- Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med. 2003;348:1953–66. DOIPubMedGoogle Scholar
- Xu RH, He JF, Evans MR, Peng GW, Field HE, Yu DW, Epidemiologic clues to SARS origin in China. Emerg Infect Dis. 2004;10:1030–7.PubMedGoogle Scholar
- Centers for Disease Control and Prevention. Prevalence of IgG antibody to SARS-associated coronavirus in animal traders—Guangdong Province, China, 2003. MMWR Morb Mortal Wkly Rep. 2003;52:986–7.PubMedGoogle Scholar
- Guan Y, Zheng BJ, He YQ, Liu XL, Zhuang ZX, Cheung CL, Isolation and characterization of viruses related to the SARS coronavirus from animals in Southern China. Science. 2003;302:276–9. DOIPubMedGoogle Scholar
- Chinese SARS Molecular Epidemiology Consortium. Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China. Science. 2004;303:1666–9. DOIPubMedGoogle Scholar
- Wu D, Tu C, Xin C, Xuan H, Meng Q, Liu Y, Civets are equally susceptible to experimental infection by two different severe acute respiratory syndrome coronavirus isolates. J Virol. 2005;79:2620–5. DOIPubMedGoogle Scholar
- Fouchier RA, Kuiken T, Schutten M, Van Amerongen G, van Doornum GJ, van den Hoogen BG, Aetiology: Koch's postulates fulfilled for SARS virus. Nature. 2003;423:240. DOIPubMedGoogle Scholar
- Qin C, Wang JW, Wei Q, She MP, Marasco WA, Jiang H, An animal model of SARS produced by infection of Macaca mulatta with SARS coronavirus. J Pathol. 2005;206:251–9. DOIPubMedGoogle Scholar
- Li BJ, Tang Q, Cheng D, Qin C, Xie FY, Wei Q, Using siRNA in prophylactic and therapeutic regimens against SARS coronavirus in Rhesus macaque. Nat Med. 2005;11:944–51.PubMedGoogle Scholar
- Bukreyev A, Lamirande EW, Buchholz UJ, Vogel LN, Elkins WR, St Claire M, Mucosal immunisation of African green monkeys (Cercopithecus aethiops) with an attenuated parainfluenza virus expressing the SARS coronavirus spike protein for the prevention of SARS. Lancet. 2004;363:2122–7. DOIPubMedGoogle Scholar
- Martina BE, Haagmans BL, Kuiken T, Fouchier RA, Rimmelzwaan GF, van Amerongen G, Virology: SARS virus infection of cats and ferrets. Nature. 2003;425:915. DOIPubMedGoogle Scholar
- Roberts A, Vogel L, Guarner J, Hayes N, Murphy B, Zaki S, Severe acute respiratory syndrome coronavirus infection of golden Syrian hamsters. J Virol. 2005;79:503–11. DOIPubMedGoogle Scholar
- Liang L, He C, Lei M, Li S, Hao Y, Zhu H, Pathology of guinea pigs experimentally infected with a novel reovirus and coronavirus isolated from SARS patients. DNA Cell Biol. 2005;24:485–90. DOIPubMedGoogle Scholar
- Roberts A, Paddock C, Vogel L, Butter E, Zaki S, Subbarao K. Aged BALB/c mice as a model for increased severity of severe acute respiratory syndrome in elderly humans. J Virol. 2005;79:5833–8. DOIPubMedGoogle Scholar
- Subbarao K, Mcauliffe J, Vogel L, Fahle G, Fischer S, Tatti K, Prior infection and passive transfer of neutralizing antibody prevent replication of severe acute respiratory syndrome coronavirus in the respiratory tract of mice. J Virol. 2004;78:3572–7. DOIPubMedGoogle Scholar
- Chen W, Yan M, Yang L, Ding B, He B, Wang YZ, SARS-associated coronavirus transmitted from human to pig. Emerg Infect Dis. 2005;11:446–8.PubMedGoogle Scholar
- Weingartl HM, Copps J, Drebot MA, Marszal P, Smith G, Gren J, Susceptibility of pigs and chickens to SARS coronavirus. Emerg Infect Dis. 2004;10:179–84.PubMedGoogle Scholar
- Ng SKC. Possible role of an animal vector in the SARS outbreak at Amoy Gardens. Lancet. 2003;362:570–2. DOIPubMedGoogle Scholar
- Swayne DE, Suarez DL, Spackman E, Tumpey TM, Beck JR, Erdman D, Domestic poultry and SARS coronavirus, southern China. Emerg Infect Dis. 2004;10:914–6.PubMedGoogle Scholar
- Wang M, Yan M, Xu H, Liang W, Kan B, Zheng B, SARS-CoV infection in a restaurant from palm civet. Emerg Infect Dis. 2005;11:1860–5.PubMedGoogle Scholar
- Tu C, Crameri G, Kong X, Chen J, Sun Y, Yu M, Antibodies to SARS coronavirus in civets. Emerg Infect Dis. 2004;10:2244–8.PubMedGoogle Scholar
- Kan B, Wang M, Jing H, Xu H, Jiang X, Yan M, Molecular evolution analysis and geographic investigation of severe acute respiratory syndrome coronavirus-like virus in palm civets at an animal market and on farms. J Virol. 2005;79:11892–900. DOIPubMedGoogle Scholar
- Poon LLM, Chu DKW, Chan KH, Wong OK, Ellis TM, Leung YHC, Identification of a novel coronavirus in bats. J Virol. 2005;79:2001–9. DOIPubMedGoogle Scholar
- Hudson PJ, Rizzoli A, Grenfell BT, Heesterbeek H, Dobson AP. The ecology of wildlife diseases. Oxford (UK): Oxford University Press; 2002.
- Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, Bats are natural reservoirs of SARS-like coronaviruses. Science. 2005;310:676–9. DOIPubMedGoogle Scholar
- Lau SKP, Woo PCY, Li KSM, Huang Y, Tsoi HW, Wong BHL, Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci U S A. 2005;102:14040–5. DOIPubMedGoogle Scholar
- Woo PC, Lau SK, Li KS, Poon RW, Wong BH, Tsoi HW, Molecular diversity of coronaviruses in bats. Virology. 2006;351:180–7. DOIPubMedGoogle Scholar
- Tang XC, Zhang JX, Zhang SY, Wang P, Fan XH, Li LF, Prevalence and genetic diversity of coronaviruses in bats from China. J Virol. 2006;80:7481–90. DOIPubMedGoogle Scholar
- Childs JE. Zoonotic viruses of wildlife: hither from yon. Arch Virol Suppl. 2004;18:1–11.PubMedGoogle Scholar
- Li W, Wong S-K, Li F, Kuhn JH, Huang I-C, Choe H, Animal origins of the severe acute respiratory syndrome coronavirus: insight from ACE2-S-protein interactions. J Virol. 2006;80:4211–9. DOIPubMedGoogle Scholar
- Calisher CH, Childs JE, Field HE, Holmes KV, Schountz T. Bats: important reservoir hosts of emerging viruses. Clin Microbiol Rev. 2006;19:531–45. DOIPubMedGoogle Scholar
- Breed AC, Field HE, Epstein JH, Daszak P. Emerging henipaviruses and flying foxes–conservation and management perspectives. Biol Conserv. 2006;131:211–20. DOIGoogle Scholar
- Mackenzie JS, Field HE. Emerging encephalitogenic viruses: lyssaviruses and henipaviruses transmitted by frugivorous bats. Arch Virol Suppl. 2004;18:97–111.PubMedGoogle Scholar
- Harris SL, Brookes SM, Jones G, Huston AM, Racey PA, Aegerter J, European bat lyssaviruses: distribution, prevalence and implications for conservation. Biol Conserv. 2006;131:193–210. DOIGoogle Scholar
- Cleaveland S, Laurenson MK, Taylor LH. Diseases of humans and their domestic mammals: pathogen characteristics, host range and the risk of emergence. Philos Trans R Soc Lond B Biol Sci. 2001;356:991–9. DOIPubMedGoogle Scholar
Page created: October 04, 2011
Page updated: October 04, 2011
Page reviewed: October 04, 2011
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.