Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 12, Number 2—February 2006
Perspective

HIV Drug-resistant Strains as Epidemiologic Sentinels

María S. Sánchez*Comments to Author , Robert M. Grant†, Travis C. Porco‡, and Wayne M. Getz*
Author affiliations: *University of California, Berkeley, California, USA; †Gladstone Institute of Virology and Immunology, San Francisco, California, USA; ‡California Department of Health Services, Berkeley, California, USA

Main Article

Figure 2

Time trends for A) proportion of persons in the acute phase infected with a resistant viral strain, B) disease prevalence in the population, and C) resistance prevalence in the population. At time t = 10 years we introduce a 1) increase in high-risk behavior from 2 to 4 contacts/person/year, or 2) decrease in the yearly fraction of acutely infected persons on treatment from 0.4 to 0.1, or 3) increase in treatment efficacy from monotherapy with zidovudine (AZT) to highly active antiretroviral the

Figure 2. Time trends for A) proportion of persons in the acute phase infected with a resistant viral strain, B) disease prevalence in the population, and C) resistance prevalence in the population. At time t = 10 years we introduce a 1) increase in high-risk behavior from 2 to 4 contacts/person/year, or 2) decrease in the yearly fraction of acutely infected persons on treatment from 0.4 to 0.1, or 3) increase in treatment efficacy from monotherapy with zidovudine (AZT) to highly active antiretroviral therapy (HAART). All other parameter values and conditions are as reported by Sánchez et al. (35). At t = 0, there is 1 infected person in a population of 100,000. For the first 2 processes, we let the simulations reach equilibrium and then introduced the change. The graphs show the trajectories starting at equilibrium and the changes occurring after 10 years. The third process reconstructs San Francisco's historical time frame for the treatment regimen change. Now the epidemic runs without treatment for 30 years, monotherapy with AZT follows for 10 years, and HAART begins at t = 40. To facilitate the comparison with the first 2 processes, we graphed the dynamics of the treatment change from the moment AZT was introduced.

Main Article

References
  1. Goudsmit  J, Weverling  GJ, van der Hoek  L, de Ronde  A, Miedema  F, Coutinho  RA, Carrier rate of zidovudine-resistant HIV-1: the impact of failing therapy on transmission of resistant strains. AIDS. 2001;15:2293301. DOIPubMedGoogle Scholar
  2. Yerly  S, Vora  S, Rizzardi  P, Chave  JP, Vernazza  PL, Flepp  M, Acute HIV infection: impact on the spread of HIV and transmission of drug resistance. AIDS. 2001;15:228792. DOIPubMedGoogle Scholar
  3. de Mendoza  C, del Romero  J, Rodríguez  C, Corral  A, Soriano  V. Decline in the rate of genotypic resistance to antiretroviral drugs in recent HIV seroconverters in Madrid. AIDS. 2002;16:18302. DOIPubMedGoogle Scholar
  4. Simon  V, Vanderhoeven  J, Hurley  A, Ramratnam  B, Louie  M, Dawson  K, Evolving patterns of HIV-1 resistance to antiretroviral agents in newly infected individuals. AIDS. 2002;16:15119. DOIPubMedGoogle Scholar
  5. Ammaranond  P, Cunningham  P, Oelrichs  R, Suzuki  K, Harris  C, Leas  L, No increase in protease resistance and a decrease in reverse transcriptase resistance mutations in primary HIV-1 infection: 1992–2001. AIDS. 2003;17:2647. DOIPubMedGoogle Scholar
  6. Bezemer  D, Jurriaans  S, Prins  M, van der Hoek  L, Prins  JM, de Wolf  F, Declining trend in transmission of drug-resistant HIV-1 in Amsterdam. AIDS. 2004;18:15717. DOIPubMedGoogle Scholar
  7. Routy  JP, Machouf  N, Edwardes  MD, Brenner  BG, Thomas  R, Trottier  B, Factors associated with a decrease in the prevalence of drug resistance in newly HIV-1 infected individuals in Montreal. AIDS. 2004;18:230512. DOIPubMedGoogle Scholar
  8. de Mendoza  C, Rodríguez  C, Eiros  JM, Colomina  J, García  F, Leiva  P, Antiretroviral recommendations may influence the rate of transmission of drug-resistant HIV type 1. Clin Infect Dis. 2005;41:22732. DOIPubMedGoogle Scholar
  9. Boden  D, Hurley  A, Zhang  L, Cao  Y, Guo  Y, Jones  E, HIV-1 drug resistance in newly infected individuals. JAMA. 1999;282:113541. DOIPubMedGoogle Scholar
  10. Harzic  M, Pellegrin  I, Deveau  C, Chaix  ML, Dubeaux  B, Garrigue  I, Genotypic drug resistance during HIV-1 primary infection in France (1996–1999): Frequency and response to treatment. AIDS. 2002;16:7936. DOIPubMedGoogle Scholar
  11. Little  SJ, Holte  S, Routy  JP, Daar  ES, Markowitz  M, Collier  AC, Antiretroviral-drug resistance among patients recently infected with HIV. N Engl J Med. 2002;347:38594. DOIPubMedGoogle Scholar
  12. Grant  RM, Hecht  FM, Warmerdam  M, Liu  L, Liegler  T, Petropoulos  CJ, Time trends in primary HIV-1 drug resistance among recently infected persons. JAMA. 2002;288:1818. DOIPubMedGoogle Scholar
  13. Grant  RM, Liegler  T, Spotts  G, Hecht  FM. Declining nucleoside reverse transcriptase inhibitor primary resistance in San Francisco, 2000–2003. In: XII International HIV Drug Resistance Workshop: Basic Principles and Clinical Implications, Los Cabos, Mexico, 2003.
  14. Violin  M, Velleca  R, Cozzi-Lepri  A, Riva  C, Grossi  PA, Carnevale  G, Prevalence of HIV-1 primary drug resistance in seroconverters of the ICONA cohort over the period 1996–2001. J Acquir Immune Defic Syndr. 2004;36:7614. DOIPubMedGoogle Scholar
  15. Basu  P. Aggressive HIV strain sets off dubious public health measure. Nat Med. 2005;11:360. DOIPubMedGoogle Scholar
  16. Briones  C, Perez-Olmeda  M, Rodriguez  C, del Romero  J, Hertogs  K, Soriano  V. Primary genotypic and phenotypic HIV-1 drug resistance in recent seroconverters in Madrid. J Acquir Immune Defic Syndr. 2001;26:14550. DOIPubMedGoogle Scholar
  17. Holodniy  M, Charlebois  ED, Bangsberg  DR, Zolopa  AR, Schulte  M, Moss  AR. Prevalence of antiretroviral drug resistance in the HIV-1-infected urban indigent population in San Francisco: a representative study. Int J STD AIDS. 2004;15:54351. DOIPubMedGoogle Scholar
  18. Leigh Brown  AJ, Frost  SD, Mathews  WC, Dawson  K, Hellmann  NS, Daar  ES, Transmission fitness of drug-resistant human immunodeficiency virus and the prevalence of resistance in the antiretroviral-treated population. J Infect Dis. 2003;187:6836. DOIPubMedGoogle Scholar
  19. de Mendoza  C, Rodríguez  C, Corral  A, del Romero  J, Gallego  O, Soriano  V. Evidence for differences in the sexual transmission efficiency of HIV strains with distinct drug resistance genotypes. Clin Infect Dis. 2004;39:12318. DOIPubMedGoogle Scholar
  20. Nowak  MA, May  RM. Virus dynamics: mathematical principles of immunology and virology. Oxford, UK: Oxford University Press; 2000.
  21. Anderson  RM, Gupta  S, May  RM. Potential of community-wide chemotherapy or immunotherapy to control the spread of HIV-1. Nature. 1991;350:3569. DOIPubMedGoogle Scholar
  22. Garnett  GP, Anderson  RM. Antiviral therapy and the transmission dynamics of HIV-1. J Antimicrob Chemother. 1996;37:13550.PubMedGoogle Scholar
  23. Levin  BR, Bull  JJ, Stewart  FM. The intrinsic rate of increase of HIV AIDS: Epidemiological and evolutionary implications. Math Biosci. 1996;132:6996. DOIPubMedGoogle Scholar
  24. Zaric  GS, Brandeau  ML, Bayoumi  AM, Owens  DK. The effects of protease inhibitors on the spread of HIV and the development of drug-resistant HIV strains: a simulation study. Simulation. 1998;71:26275. DOIGoogle Scholar
  25. Blower  SM, Gershengorn  HB, Grant  RM. A tale of two futures: HIV and antiretroviral therapy in San Francisco. Science. 2000;287:6504. DOIPubMedGoogle Scholar
  26. Blower  S, Ma  L, Farmer  P, Koenig  S. Predicting the impact of antiretrovirals in resource-poor settings: preventing HIV infections whilst controlling drug resistance. Curr Drug Targets Infect Disord. 2003;3:34553. DOIPubMedGoogle Scholar
  27. Velasco-Hernández  JX, Gershengorn  HB, Blower  SM. Could widespread use of combination antiretroviral therapy eradicate HIV epidemics? Lancet Infect Dis. 2002;2:48793. DOIPubMedGoogle Scholar
  28. Blower  SM, Aschenbach  AN, Gershengorn  HB, Kahn  JO. Predicting the unpredictable: transmission of drug-resistant HIV. Nat Med. 2001;7:101620. DOIPubMedGoogle Scholar
  29. Law  MG, Prestage  G, Grulich  A, van de Ven  P, Kippax  S. Modelling the effect of combination antiretroviral treatments on HIV incidence. AIDS. 2001;15:128794. DOIPubMedGoogle Scholar
  30. Law  MG, Prestage  G, Grulich  A, van de Ven  P, Kippax  S. Modelling HIV incidence in gay men: increased treatment, unsafe sex and sexually transmissible infections. AIDS. 2002;16:499501. DOIPubMedGoogle Scholar
  31. Clements  MS, Prestage  G, Grulich  A, van de Ven  P, Kippax  S, Law  MG. Modeling trends in HIV incidence among homosexual men in Australia 1995–2006. J Acquir Immune Defic Syndr. 2004;35:4016. DOIPubMedGoogle Scholar
  32. Dangerfield  BC, Fang  YX, Roberts  CA. Model-based scenarios for the epidemiology of HIV/AIDS: the consequences of highly active antiretroviral therapy. Syst Dyn Rev. 2001;17:11950. DOIGoogle Scholar
  33. Blower  S, Volberding  P. What can modeling tell us about the threat of antiviral drug resistance? Curr Opin Infect Dis. 2002;15:60914. DOIPubMedGoogle Scholar
  34. Blower  SM, Aschenbach  AN, Kahn  JO. Predicting the transmission of drug-resistant HIV: comparing theory with data. Lancet Infect Dis. 2003;3:101. DOIPubMedGoogle Scholar
  35. Sánchez  MS, Grant  RM, Porco  TC, Gross  KL, Getz  WM. A decrease in drug resistance levels of the HIV epidemic can be bad news. Bull Math Biol. 2005;67:76182. DOIPubMedGoogle Scholar
  36. de Mendoza  C, Martín-Carbonero  L, Gallego  O, Corral  A, González-Lahoz  J, Soriano  V. Relationship between drug resistance mutations, plasma viremia, and CD4(+) T-cell counts in patients with chronic HIV infection. J Med Virol. 2005;76:16. DOIPubMedGoogle Scholar
  37. Duwe  S, Brunn  M, Altmann  D, Hamouda  O, Schmidt  B, Walter  H, Frequency of genotypic and phenotypic drug-resistant HIV-1 among therapy-naive patients of the German seroconverter study. J Acquir Immune Defic Syndr. 2001;26:26673. DOIPubMedGoogle Scholar
  38. UK Collaborative Group on Monitoring the Transmission of HIV Drug Resistance. Analysis of prevalence of HIV-1 drug resistance in primary infections in the United Kingdom. BMJ. 2001;322:10878. DOIPubMedGoogle Scholar
  39. Weinstock  HS, Zaidi  I, Heneine  W, Bennett  D, Garcia-Lerma  JG, Douglas  JM, The epidemiology of antiretroviral drug resistance among drug-naive HIV-1-infected persons in 10 US cities. J Infect Dis. 2004;189:217480. DOIPubMedGoogle Scholar
  40. Chaix  ML, Descamps  D, Harzic  M, Schneider  W, Deveau  C, Tamalet  C, Stable prevalence of genotypic drug resistance mutations but increase in non-B virus among patients with primary HIV-1 infection in France. AIDS. 2003;17:263543. DOIPubMedGoogle Scholar

Main Article

Page created: February 02, 2012
Page updated: February 02, 2012
Page reviewed: February 02, 2012
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external