Volume 12, Number 2—February 2006
Dispatch
Sequencing and Staphylococci Identification
Table 2
Strain | rpoB gene (% similarity*) | Definitive identification† |
---|---|---|
M01 | Staphylococcus arlettae (100.0) | S. arlettae |
M02 | S. aureus subsp. aureus (100.0) | S. aureus subsp. aureus |
M03 | S. aureus subsp. aureus (100.0) | S. aureus subsp. aureus |
M04 | S. aureus subsp. aureus (99.8) | S. aureus subsp. aureus |
M05‡ | S. aureus subsp. aureus (99.8) | S. aureus subsp. aureus |
M06 | S. aureus subsp. aureus (100.0) | S. aureus subsp. aureus |
M07‡ | S. aureus subsp. aureus (100.0) | S. aureus subsp. aureus |
M08 | S. haemolyticus (94.0) | S. haemolyticus |
M09 | S. epidermidis (100.0) | S. epidermidis |
M10 | S. capitis subsp. capitis (100.0) | S. capitis subsp. capitis |
M11 | S. epidermidis (100.0) | S. epidermidis |
M12‡ | S. epidermidis (100.0) | S. epidermidis |
M13‡ | S. capitis subsp. capitis (99.8) | S. capitis subsp. capitis |
M14 | S. caprae (99.8) | S. caprae |
M15 | S. caprae (99.8) | S. caprae |
M16 | S. chromogenes (100.0) | S. chromogenes |
M17 | S. cohnii subsp. cohnii (99.8) | S. cohnii subsp. cohnii |
M18 | S. cohnii subsp. cohnii (99.8) | S. cohnii subsp. cohnii |
M20 | S. saprophyticus subsp. saprophyticus (100.0) | S. saprophyticus subsp. bovis |
M21 | S. epidermidis (99.0) | S. epidermidis |
M22 | S. epidermidis (100.0) | S. epidermidis |
M23‡ | S. epidermidis (100.0) | S. epidermidis |
M24 | S. epidermidis (100.0) | S. epidermidis |
M25‡ | S. epidermidis (100.0) | S. epidermidis |
M26 | S. equorum subsp. equorum (100.0); S. equorum subsp. linens (100.0) | S. equorum; subspecies not known |
M27 | S. felis (99.8) | S. felis |
M28 | S. haemolyticus (100.0) | S. haemolyticus |
M29 | S. haemolyticus (99.8) | S. haemolyticus |
M30 | S. epidermidis (100.0) | S. epidermidis |
M31 | S. epidermidis (100.0) | S. epidermidis |
M32 | S. hyicus (100.0) | S. hyicus |
M33 | S. intermedius (100.0) | S. intermedius |
M34 | S. intermedius (100.0) | S. intermedius |
M35 | S. intermedius (100.0) | S. intermedius |
M36 | S. xylosus (100.0) | S. xylosus |
M37 | S. lugdunensis (100.0) | S. lugdunensis |
M38 | S. lugdunensis (100.0) | S. lugdunensis |
M39 | S. saprophyticus subsp. saprophyticus (100.0) | S. saprophyticus subsp. bovis |
M40 | S. aureus subsp. aureus (100.0) | S. aureus subsp. aureus |
M41 | S. schleiferi subsp. schleiferi (100.0) | S. schleiferi subsp. schleiferi |
M42 | S. schleiferi subsp. schleiferi (100.0) | S. schleiferi subsp. schleiferi |
M43 | S. sciuri subsp. sciuri (99.8) | S. sciuri subsp. sciuri |
M44 | S. sciuri subsp. sciuri (99.8) | S. sciuri subsp. sciuri |
M45 | S. sciuri subsp. sciuri (100.0) | S. sciuri subsp. sciuri |
M46 | S. simulans (100.0) | S. simulans |
M47 | S. hominis subsp. novobiosepticus (99.6) | S. hominis subsp. novobiosepticus |
M48 | S. felis (99.8) | S. felis |
M49 | S. felis (99.8) | S. felis |
M50 | S. warneri (95.9) | S. warneri |
M51 | S. warneri (95.3) | S. warneri |
M52 | S. warneri (96.0) | S. warneri |
M53 | S. equorum subsp. equorum (99.8); S. equorum subsp. linens (99.8) | S. equorum; subspecies not known |
M54 | S. xylosus (99.0) | S. xylosus |
M55 | S. xylosus (97.1) | S. xylosus |
M56 | S. xylosus (98.6) | S. xylosus |
*Similarity in comparison with the reference database.
†By phenotypic and genotypic methods as previously published (4).
‡Isolate exhibiting the small colony variant phenotype.
References
- von Eiff C, Peters G, Heilmann C. Pathogenesis of infections due to coagulase-negative staphylococci. Lancet Infect Dis. 2002;2:677–85. DOIPubMedGoogle Scholar
- Seifert H, Wisplinghoff H, Schnabel P, von Eiff C. Small colony variants of Staphylococcus aureus and pacemaker-related infection. Emerg Infect Dis. 2003;9:1316–8.PubMedGoogle Scholar
- Becker K, Harmsen D, Mellmann A, Meier C, Schumann P, Peters G, Development and evaluation of a quality-controlled ribosomal sequence database for 16S ribosomal DNA-based identification of Staphylococcus species. J Clin Microbiol. 2004;42:4988–95. DOIPubMedGoogle Scholar
- Kwok AY, Su SC, Reynolds RP, Bay SJ, Av-Gay Y, Dovichi NJ, Species identification and phylogenetic relationships based on partial HSP60 gene sequences within the genus Staphylococcus. Int J Syst Bacteriol. 1999;49:1181–92. DOIPubMedGoogle Scholar
- Poyart C, Quesne G, Boumaila C, Trieu-Cuot P. Rapid and accurate species-level identification of coagulase-negative staphylococci by using the sodA gene as a target. J Clin Microbiol. 2001;39:4296–301. DOIPubMedGoogle Scholar
- Drancourt M, Raoult D. rpoB gene sequence-based identification of Staphylococcus species. J Clin Microbiol. 2002;40:1333–8. DOIPubMedGoogle Scholar
- Euzeby JP. List of bacterial names with standing in nomenclature: a folder available on the internet. Int J Syst Bacteriol. 1997;47:590–2. DOIPubMedGoogle Scholar
- Trülzsch K, Rinder H, Trcek J, Bader L, Wilhelm U, Heesemann J. 'Staphylococcus pettenkoferi' a novel staphylococcal species isolated from clinical specimens. Diagn Microbiol Infect Dis. 2002;43:175–82. DOIPubMedGoogle Scholar
- Harmsen D, Karch H. 16S rDNA for diagnosing pathogens: a living tree. ASM News. 2004;70:19–24.
- Clarridge JE. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev. 2004;17:840–62. DOIPubMedGoogle Scholar
- Drancourt M, Roux V, Fournier P, Raoult D. rpoB gene sequence-based identification of aerobic gram-positive cocci of the genera Streptococcus, Enterococcus, Gemella, Abiotrophia, and Granulicatella. J Clin Microbiol. 2004;42:497–504. DOIPubMedGoogle Scholar
- Mollet C, Drancourt M, Raoult D. rpoB sequence analysis as a novel basis for bacterial identification. Mol Microbiol. 1997;26:1005–11. DOIPubMedGoogle Scholar
- Khamis A, Raoult D, La Scola B. Comparison between rpoB and 16S rRNA gene sequencing for molecular identification of 168 clinical isolates of Corynebacterium. J Clin Microbiol. 2005;43:1934–6. DOIPubMedGoogle Scholar
- Blackwood KS, Turenne CY, Harmsen D, Kabani AM. Reassessment of sequence-based targets for identification of Bacillus species. J Clin Microbiol. 2004;42:1626–30. DOIPubMedGoogle Scholar
- Cook VJ, Turenne CY, Wolfe J, Pauls R, Kabani A. Conventional methods versus 16S ribosomal DNA sequencing for identification of nontuberculous mycobacteria: cost analysis. J Clin Microbiol. 2003;41:1010–5. DOIPubMedGoogle Scholar
Page created: February 02, 2012
Page updated: February 02, 2012
Page reviewed: February 02, 2012
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.