Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 12, Number 6—June 2006

Host Range Restriction and Pathogenicity in the Context of Influenza Pandemic

Gabriele Neumann* and Yoshihiro Kawaoka*†‡Comments to Author 
Author affiliations: *University of Wisconsin-Madison, Madison, USA; †University of Tokyo, Tokyo, Japan; ‡Japan Science and Technology Agency, Saitama, Japan

Main Article


Comparison of the hemagglutinin (HA) cleavage sites of highly pathogenic avian influenza viruses and their nonpathogenic predecessors

Isolate Type Amino acid sequence* Reference
A/chicken/Pennsylvania/1/83 (H5N2) Avirulent P Q - - - - - - - - - - - K K K R/ G L F (36)
A/chicken/Pennsylvania/1370/83 (H5N2) Virulent P Q - - - - - - - - - - - K K K R/ G L F† (36)
A/chicken/Mexico/31381-7/94 (H5N2) Avirulent P Q - - - - - - - - - - - R E T R/ G L F (37)
A/chicken/Queretaro/14588-19/95 (H5N2) Virulent P Q - - - - - - - - - R K R K T R/ G L F (37)
A/turkey/Italy/99 (H7N1) consensus Avirulent P E I P K G - - - - - - - - - - R/ G L F (38)
A/turkey/Italy/99 (H7N1) consensus Virulent P E I P K G - - - - - - S R V R R/ G L F (38)
A/chicken/Chile/176822/02 (H7N3) Avirulent P E K P K - - - - - - - - - - T R/ G L F (39)
A/chicken/Chile/4957/02 (H7N3) Virulent P E K P K T C S P L S R C R K T R/ G L F (39)
A/chicken/Chile/4322/02 (H7N3) Virulent P E K P K T C S P L S R C R E T R/ G L F (39)
Isolate CN6/04 Avirulent P E N P K - - - - - - - - - - T R/ G L F (40)
A/chicken/BC/CN12/04(H7N3) Virulent P E N P K - - --Q A Y Q K R M T R/ G L F (40)
A/chicken/BC/NS1337-1/04 (H7N3) Virulent P E N P K - - - Q A Y K K R M T R/ G L F (40)
A/chicken/BC/NS-1319-2/04(H7N3) Virulent P E N P K - - - Q A Y H K R M T R/ G L F (40)
A/chicken/BC/CN7-3/04 (H7N3) Virulent P E N P K - - - Q A Y R K R M T R/ G L F (40)
A/chicken/BC/NS-1390-2/04(H7N3) Virulent P E N P K - - - Q A H Q K R M T R/ G L F (40)
A/chicken/BC/NS-2035-12/04(H7N3) Virulent P E N P K - - - Q A C Q K R M T R/ G L F (40)

*HA cleavage sites are indicated by /. For sequence variants, the amino acids that differ from most sequences found are underlined.
†HA cleavability was enhanced by a single amino acid substitution that abrogated glycosylation near the HA cleavage site.

Main Article

  1. Rogers  GN, Paulson  JC. Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology. 1983;127:36173. DOIPubMedGoogle Scholar
  2. Rogers  GN, Paulson  JC, Daniels  RS, Skehel  JJ, Wilson  IA, Wiley  DC. Single amino acid substitutions in influenza haemagglutinin change receptor binding specificity. Nature. 1983;304:768. DOIPubMedGoogle Scholar
  3. Couceiro  JN, Paulson  JC, Baum  LG. Influenza virus strains selectively recognize sialyloligosaccharides on human respiratory epithelium; the role of the host cell in selection of hemagglutinin receptor specificity. Virus Res. 1993;29:15565. DOIPubMedGoogle Scholar
  4. Ito  T, Couceiro  JN, Kelm  S, Baum  LG, Krauss  S, Castrucci  MR, Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J Virol. 1998;72:736773.PubMedGoogle Scholar
  5. Kida  H, Ito  T, Yasuda  J, Shimizu  Y, Itakura  C, Shortridge  KF, Potential for transmission of avian influenza viruses to pigs. J Gen Virol. 1994;75:21838. DOIPubMedGoogle Scholar
  6. Claas  EC, Osterhaus  AD, Van Beek  R, de Jong  JC, Rimmelzwaan  GF, Senne  DA, Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet. 1998;351:4727. DOIPubMedGoogle Scholar
  7. Subbarao  K, Klimov  A, Katz  J, Regnery  H, Lim  W, Hall  H, Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science. 1998;279:3936. DOIPubMedGoogle Scholar
  8. Fouchier  RA, Schneeberger  PM, Rozendaal  FW, Broekman  JM, Kemink  SA, Munster  V, Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proc Natl Acad Sci U S A. 2004;101:135661. DOIPubMedGoogle Scholar
  9. Matrosovich  MN, Matrosovich  TY, Gray  T, Roberts  NA, Klenk  HD. Human and avian influenza viruses target different cell types in cultures of human airway epithelium. Proc Natl Acad Sci U S A. 2004;101:46204. DOIPubMedGoogle Scholar
  10. Matrosovich  M, Zhou  N, Kawaoka  Y, Webster  R. The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. J Virol. 1999;73:114655.PubMedGoogle Scholar
  11. Gamblin  SJ, Haire  LF, Russell  RJ, Stevens  DJ, Xiao  B, Ha  Y, The structure and receptor-binding properties of the 1918 influenza hemagglutinin. Science. 2004;303:183842. DOIPubMedGoogle Scholar
  12. Stevens  J, Corper  AL, Basler  CF, Taubenberger  JK, Palese  P, Wilson  IA. Structure of the uncleaved human h1 hemagglutinin from the extinct 1918 influenza virus. Science. 2004;303:186670. DOIPubMedGoogle Scholar
  13. Matrosovich  M, Tuzikov  A, Bovin  N, Gambaryan  A, Klimov  A, Castrucci  MR, Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. J Virol. 2000;74:850212. DOIPubMedGoogle Scholar
  14. Kobasa  D, Takada  A, Shinya  K, Hatta  M, Halfmann  P, Theriault  S, Enhanced virulence of influenza A viruses with the haemagglutinin of the 1918 pandemic virus. Nature. 2004;431:7037. DOIPubMedGoogle Scholar
  15. Matrosovich  MN, Krauss  S, Webster  RG. H9N2 influenza A viruses from poultry in Asia have human virus-like receptor specificity. Virology. 2001;281:15662. DOIPubMedGoogle Scholar
  16. Baum  LG, Paulson  JC. The N2 neuraminidase of human influenza virus has acquired a substrate specificity complementary to the hemagglutinin receptor specificity. Virology. 1991;180:105. DOIPubMedGoogle Scholar
  17. Kobasa  D, Kodihalli  S, Luo  M, Castrucci  MR, Donatelli  I, Suzuki  Y, Amino acid residues contributing to the substrate specificity of the influenza A virus neuraminidase. J Virol. 1999;73:674351.PubMedGoogle Scholar
  18. Blok  J, Air  GM. Variation in the membrane-insertion and "stalk" sequences in eight subtypes of influenza type A virus neuraminidase. Biochemistry. 1982;21:40017. DOIPubMedGoogle Scholar
  19. Els  MC, Air  GM, Murti  KG, Webster  RG, Laver  WG. An 18-amino acid deletion in an influenza neuraminidase. Virology. 1985;142:2417. DOIPubMedGoogle Scholar
  20. Luo  G, Chung  J, Palese  P. Alterations of the stalk of the influenza virus neuraminidase: deletions and insertions. Virus Res. 1993;29:14153. DOIPubMedGoogle Scholar
  21. Li  KS, Guan  Y, Wang  J, Smith  GJ, Xu  KM, Duan  L, Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature. 2004;430:20913. DOIPubMedGoogle Scholar
  22. Takahashi  T, Suzuki  Y, Nishinaka  D, Kawase  N, Kobayashi  Y, Hidari  KI, Duck and human pandemic influenza A viruses retain sialidase activity under low pH conditions. J Biochem. 2001;130:27983.PubMedGoogle Scholar
  23. de Jong  MD, Bach  VC, Phan  TQ, Vo  MH, Tran  TT, Nguyen  BH, Fatal avian influenza A (H5N1) in a child presenting with diarrhea followed by coma. N Engl J Med. 2005;352:68691. DOIPubMedGoogle Scholar
  24. Gao  P, Watanabe  S, Ito  T, Goto  H, Wells  K, McGregor  M, Biological heterogeneity, including systemic replication in mice, of H5N1 influenza A virus isolates from humans in Hong Kong. J Virol. 1999;73:31849.PubMedGoogle Scholar
  25. Lu  X, Tumpey  TM, Morken  T, Zaki  SR, Cox  NJ, Katz  JM. A mouse model for the evaluation of pathogenesis and immunity to influenza A (H5N1) viruses isolated from humans. J Virol. 1999;73:590311.PubMedGoogle Scholar
  26. Hatta  M, Gao  P, Halfmann  P, Kawaoka  Y. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science. 2001;293:18402. DOIPubMedGoogle Scholar
  27. Fouchier  RA, Schneeberger  PM, Rozendaal  FW, Broekman  JM, Kemink  SA, Munster  V, Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proc Natl Acad Sci U S A. 2004;101:135661. DOIPubMedGoogle Scholar
  28. Puthavathana  P, Auewarakul  P, Charoenying  PC, Sangsiriwut  K, Pooruk  P, Boonnak  K, Molecular characterization of the complete genome of human influenza H5N1 virus isolates from Thailand. J Gen Virol. 2005;86:42333. DOIPubMedGoogle Scholar
  29. Subbarao  EK, London  W, Murphy  BR. A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. J Virol. 1993;67:17614.PubMedGoogle Scholar
  30. Naffakh  N, Massin  P, Escriou  N, Crescenzo-Chaigne  B, van der Werf  S. Genetic analysis of the compatibility between polymerase proteins from human and avian strains of influenza A viruses. J Gen Virol. 2000;81:128391.PubMedGoogle Scholar
  31. Scholtissek  C, Rohde  W, Von Hoyningen  V, Rott  R. On the origin of the human influenza virus subtypes H2N2 and H3N2. Virology. 1978;87:1320. DOIPubMedGoogle Scholar
  32. Kawaoka  Y, Krauss  S, Webster  RG. Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics. J Virol. 1989;63:46038.PubMedGoogle Scholar
  33. Snyder  MH, Buckler-White  AJ, London  WT, Tierney  EL, Murphy  BR. The avian influenza virus nucleoprotein gene and a specific constellation of avian and human virus polymerase genes each specify attenuation of avian-human influenza A/Pintail/79 reassortant viruses for monkeys. J Virol. 1987;61:285763.PubMedGoogle Scholar
  34. Scholtissek  C, Stech  J, Krauss  S, Webster  RG. Cooperation between the hemagglutinin of avian viruses and the matrix protein of human influenza A viruses. J Virol. 2002;76:17816. DOIPubMedGoogle Scholar
  35. Garten  W, Klenk  HD. Understanding influenza virus pathogenicity. Trends Microbiol. 1999;7:99100. DOIPubMedGoogle Scholar
  36. Kawaoka  Y, Naeve  CW, Webster  RG. Is virulence of H5N2 influenza viruses in chickens associated with loss of carbohydrate from the hemagglutinin? Virology. 1984;139:30316. DOIPubMedGoogle Scholar
  37. Garcia  M, Crawford  JM, Latimer  JW, Rivera-Cruz  E, Perdue  ML. Heterogeneity in the haemagglutinin gene and emergence of the highly pathogenic phenotype among recent H5N2 avian influenza viruses from Mexico. J Gen Virol. 1996;77:1493504. DOIPubMedGoogle Scholar
  38. Banks  J, Speidel  ES, Moore  E, Plowright  L, Piccirillo  A, Capua  I, Changes in the haemagglutinin and the neuraminidase genes prior to the emergence of highly pathogenic H7N1 avian influenza viruses in Italy. Arch Virol. 2001;146:96373. DOIPubMedGoogle Scholar
  39. Suarez  DL, Senne  DA, Banks  J, Brown  IH, Essen  SC, Lee  CW, Recombination resulting in virulence shift in avian influenza outbreak, Chile. Emerg Infect Dis. 2004;10:6939.PubMedGoogle Scholar
  40. Pasick  J, Handel  K, Robinson  J, Copps  J, Ridd  D, Hills  K, Intersegmental recombination between the haemagglutinin and matrix genes was responsible for the emergence of a highly pathogenic H7N3 avian influenza virus in British Columbia. J Gen Virol. 2005;86:72731. DOIPubMedGoogle Scholar
  41. Horimoto  T, Kawaoka  Y. Reverse genetics provides direct evidence for a correlation of hemagglutinin cleavability and virulence of an avian influenza A virus. J Virol. 1994;68:31208.PubMedGoogle Scholar
  42. Garcia-Sastre  A. Identification and characterization of viral antagonists of type I interferon in negative-strand RNA viruses. Curr Top Microbiol Immunol. 2004;283:24980.PubMedGoogle Scholar
  43. Krug  RM, Yuan  W, Noah  DL, Latham  AG. Intracellular warfare between human influenza viruses and human cells: the roles of the viral NS1 protein. Virology. 2003;309:1819. DOIPubMedGoogle Scholar
  44. Geiss  GK, Salvatore  M, Tumpey  TM, Carter  VS, Wang  X, Basler  CF, Cellular transcriptional profiling in influenza A virus-infected lung epithelial cells: the role of the nonstructural NS1 protein in the evasion of the host innate defense and its potential contribution to pandemic influenza. Proc Natl Acad Sci U S A. 2002;99:1073641. DOIPubMedGoogle Scholar
  45. Cheung  CY, Poon  LL, Lau  AS, Luk  W, Lau  YL, Shortridge  KF, Induction of proinflammatory cytokines in human macrophages by influenza A (H5N1) viruses: a mechanism for the unusual severity of human disease? Lancet. 2002;360:18317. DOIPubMedGoogle Scholar
  46. Guan  Y, Poon  LL, Cheung  CY, Ellis  TM, Lim  W, Lipatov  AS, H5N1 influenza: a protean pandemic threat. Proc Natl Acad Sci U S A. 2004;101:815661. DOIPubMedGoogle Scholar
  47. Kash  JC, Basler  CF, Garcia-Sastre  A, Carter  V, Billharz  R, Swayne  DE, Global host immune response: pathogenesis and transcriptional profiling of type A influenza viruses expressing the hemagglutinin and neuraminidase genes from the 1918 pandemic virus. J Virol. 2004;78:9499511. DOIPubMedGoogle Scholar
  48. Seo  SH, Hoffmann  E, Webster  RG. Lethal H5N1 influenza viruses escape host anti-viral cytokine responses. Nat Med. 2002;8:9504. DOIPubMedGoogle Scholar
  49. Seo  SH, Hoffmann  E, Webster  RG. The NS1 gene of H5N1 influenza viruses circumvents the host anti-viral cytokine responses. Virus Res. 2004;103:10713. DOIPubMedGoogle Scholar

Main Article

Page created: January 04, 2012
Page updated: January 04, 2012
Page reviewed: January 04, 2012
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.