Volume 12, Number 8—August 2006
Letter
Detecting Clostridium botulinum
To the Editor: In the October 2005 issue of Emerging Infectious Diseases, Song et al. described a fiber-optic, microsphere-based, high-density array composed of 18 species-specific probe microsensors, used to identify biological warfare agents, including Clostridium botulinum (1). Although the researchers used multiple probes for C. botulinum, we doubt that this approach is suitable for this organism.
C. botulinum comprises a heterogenous group of subspecies that produce botulinum neurotoxin (BoNT); identification and characterization usually rely on animal testing that focuses on antigenetically distinct toxins (2). Although strains of C. botulinum that do not produce toxins are sometimes isolated from wound infections not related to botulism, some strains of C. butyricum and C. baratii are also able to produce BoNTs.
The mouse bioassay is currently the accepted method for detecting BoNT. In this assay, mice that receive an intraperitoneal injection containing a sample with more than a minimum lethal dose show symptoms of botulinum intoxication and die. ELISAs, which recognize protein antigenic sites, are still less sensitive than the mouse bioassay (3).
Because the mouse bioassay requires euthanizing many animals, and results are not available for several hours, new diagnostic methods are needed. For C. botulinum, an organism widely dispersed in the environment, DNA-based methods may not provide the ultimate solution. Rapid methods to detect and differentiate active BoNTs, such as the rapid, mass spectrometry-based, functional method, are promising candidates to substitute for animal testing in the near future (4).
References
- Song L, Ahn S, Walt DR. Detecting biological warfare agents. Emerg Infect Dis. 2005;11:1629–32.PubMedGoogle Scholar
- Grif K, Dierich MP, Much P, Hofer E, Allerberger F. Identifying and subtyping species of dangerous pathogens by automated ribotyping. Diagn Microbiol Infect Dis. 2003;47:313–20. DOIPubMedGoogle Scholar
- Ferreira JL, Eliasberg SJ, Edmonds P, Harrison MA. Comparison of the mouse bioassay and enzyme-linked immunosorbent assay procedures for the detection of type A botulinal toxin in food. J Food Prot. 2004;67:203–6.PubMedGoogle Scholar
- Barr JR, Moura H, Boyer AE, Woolfitt AR, Kalb SR, Pavlopoulos A, Botulinum neurotoxin detection and differentiation by mass spectrometry. Emerg Infect Dis. 2005;11:1578–83.PubMedGoogle Scholar
Related Links
Table of Contents – Volume 12, Number 8—August 2006
EID Search Options |
---|
Advanced Article Search – Search articles by author and/or keyword. |
Articles by Country Search – Search articles by the topic country. |
Article Type Search – Search articles by article type and issue. |
Please use the form below to submit correspondence to the authors or contact them at the following address:
Franz Allerberger, Medical University Innsbruck, Medical University Innsbruck–Hygiene, Fritz Pregl Str 3, Innsbruck Austria 6020
Top