Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 12, Number 8—August 2006
Dispatch

West Nile Virus Epizootiology, Central Red River Valley, North Dakota and Minnesota, 2002–2005

Jeffrey A. Bell*, Christina M. Brewer*, Nathan J. Mickelson*, Gabriel W. Garman*, and Jefferson A. Vaughan*Comments to Author 
Author affiliations: *University of North Dakota, Grand Forks, North Dakota, USA

Main Article

Table 2

Epizootiology of West Nile virus (WNV) within the central Red River Valley of North Dakota and Minnesota during the first 4 years of its introduction into the region*

Year Primary transmission season† Thermal accumulations (degree-days)‡ Vector abundance§ Human cases in ND¶ Seasonal MIR# Passerine seroprevalence
2002, introductory 92 days
(11 Jun–10 Sep) 1,067 230 17 0.0
(n = 5,871) No birds tested
2003, epidemic 92 days
(11 Jun–10 Sep) 1,022 21 617 5.7
(n = 5,432) 17%
(n = 82)
2004, cold 51 days
(7 Jul–1 Sep) 371 9 20 0.0
(n = 1,245) 58%
(n = 52)
2005, equilibrium? 84 days
(20 Jun–11 Sep) 867 29 86 1.3
(n = 3,123) 57%
(n = 143)

*ND, North Dakota; MIR, minimum infection rate.
†Time between first and last appearances of host-seeking Culex tarsalis mosquitoes in Mosquito Magnet traps.
‡Based on developmental threshold temperature of 14.3°C for WNV growth in Cx. tarsalis (14).
§Average number of Cx. tarsalis mosquitoes captured per trap-night in Grand Forks, ND.
¶Data from North Dakota Department of Public Health (15).
#No. of WNV-infected Cx. tarsalis mosquitoes per 1,000.

Main Article

References
  1. Centers for Disease Control and Prevention. West Nile virus—statistics, surveillance and control, January 10, 2006 [cited 2006 Jan 30]. Available from http://www.cdc.gov/ncidod/dvbid/westnile/surv&control.htm
  2. Bell  JA, Mickelson  NJ, Vaughan  JA. West Nile virus in host-seeking mosquitoes within a residential neighborhood in Grand Forks, North Dakota. Vector Borne Zoonotic Dis. 2005;5:37382. DOIPubMedGoogle Scholar
  3. Blitvich  BJ, Marlenee  NL, Hall  RA, Calisher  CH, Bowen  RA, Roehrig  JT, Epitope-blocking enzyme-linked immunosorbent assays for the detection of serum antibodies to West Nile virus in multiple avian species. J Clin Microbiol. 2003;41:10417. DOIPubMedGoogle Scholar
  4. Komar  N, Burns  J, Dean  C, Panella  NA, Dusza  S, Cherry  B. Serological evidence for West Nile virus infection in birds in Staten Island, New York, after an outbreak in 2000. Vector Borne Zoonotic Dis. 2001;1:1918. DOIPubMedGoogle Scholar
  5. Godsey  MS, Blackmore  MS, Panella  NA, Burkhalter  K, Gottfried  K, Halsey  LA, West Nile virus epizootiology in the Southeastern United States, 2001. Vector Borne Zoonotic Dis. 2005;5:828. DOIPubMedGoogle Scholar
  6. Beveroth  TA, Ward  MP, Lampman  RL, Ringia  AM, Novak  RJ. Changes in seroprevalence of West Nile virus across Illinois in free-ranging birds from 2001 through 2004. Am J Trop Med Hyg. 2006;74:1749.PubMedGoogle Scholar
  7. Howard  JJ, Oliver  J, Grayson  MA. Antibody response of wild birds to natural infection with alphaviruses. J Med Entomol. 2004;41:1090103. DOIPubMedGoogle Scholar
  8. Gibbs  SEJ, Hoffman  DM, Stark  LM, Marlenee  NL, Blitvich  BJ, Beaty  BJ, Persistence of antibodies to West Nile virus in naturally infected rock pigeons (Columba livia). Clin Diagn Lab Immunol. 2005;12:6657.PubMedGoogle Scholar
  9. Komar  N, Langevin  S, Hinten  S, Nemeth  N, Edwards  E, Hettler  D, Experimental infection of North American birds with the New York 1999 strain of West Nile virus. Emerg Infect Dis. 2003;9:31122.PubMedGoogle Scholar
  10. Yaremych  SA, Warner  RE, Mankin  PC, Brawn  JD, Raim  A, Novak  R. West Nile virus and high death rate in American crows. Emerg Infect Dis. 2004;10:70911.PubMedGoogle Scholar
  11. Caffrey  C, Smith  SCR, Weston  TJ. West Nile virus devastates an American crow population. Condor. 2005;107:12832. DOIGoogle Scholar
  12. Davis  CT, Beasley  DWC, Guzman  H, Pushker  R, D'Anton  M, Novak  RJ, Genetic variation among temporally and geographically distinct West Nile virus isolates, United States, 2001, 2002. Emerg Infect Dis. 2003;9:14239.PubMedGoogle Scholar
  13. Ebel  GD, Carricaburu  J, Young  D, Bernard  KA, Kramer  LD. Genetic and phenotypic variation of West Nile virus in New York, 2000–2003. Am J Trop Med Hyg. 2004;71:493500.PubMedGoogle Scholar
  14. Reisen  WK, Fang  Y, Martinez  VM. Medline Effects of temperature on the transmission of West Nile virus by Culex tarsalis (Diptera:Culicidae). J Med Entomol. 2006;43:30917. DOIPubMedGoogle Scholar
  15. North Dakota Department of Public Health. North Dakota West Nile virus surveillance program, January 3, 2006 [cited 2006 Jan 30]. Available from http://www.ndwnv.com

Main Article

Page created: December 09, 2011
Page updated: December 09, 2011
Page reviewed: December 09, 2011
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external