Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 14, Number 3—March 2008
Dispatch

Methicillin-Resistant and -Susceptible Staphylococcus aureus Sequence Type 398 in Pigs and Humans

Alex van Belkum*, Damian C. Melles*Comments to Author , Justine K. Peeters*, Willem B. van Leeuwen*, Engeline van Duijkeren†, Xander W. Huijsdens‡, Emile Spalburg‡, Albert J. de Neeling‡, Henri A. Verbrugh*, and on behalf of the Dutch Working Party on Surveillance Research of MRSA (SOM)
Author affiliations: *University Medical Center Rotterdam, Rotterdam, the Netherlands; †University of Utrecht, Utrecht, the Netherlands; ‡National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; 1Members of SOM: A. van Belkum, M. Bonten, M. van den Broek, J. Degener, E. van Duijkeren, A. van de Giessen, X.W. Huijsdens, J.A.J.W. Kluytmans, B. ter Kuile, I. van Loo, D. Mevius, A.J. de Neeling, R. van Oosterom, E. Stobberingh, E.W. Tiemersma, H.A. Verbrugh, A. Voss, J.A. Wagenaar, and P. van der Wolf;

Main Article

Figure 1

A) Meta-analysis of the amplified fragment length polymorphism data obtained for the pig-associated methicillin-resistant Staphylococcus aureus sequence type 398 (ST398 MRSA) and its closely related methicillin-susceptible S. aureus (MSSA) strains, carriage MSSA isolates from healthy children and elderly persons, invasive MSSA from hospitalized children and elderly persons, and invasive animal S. aureus isolates (including 2 MRSA isolates) (10,11). Green and red represent 161,700 binary outcomes generated by high throughput restriction fragment length polymorphism with 147 marker fragments. Marker absence corresponds with green, marker presence corresponds with red, and gray represents ambiguous positions (i.e., weak bands), scored as marker absence in the mathematical analyses. ST398 MRSA strains are boxed. The dendrogram on the left shows the phylogenetic strain clustering; the dendrogram on the x-axis shows marker clustering. Marker groups are cluster specific. Markers on the right are defined as follows: blue, carriage isolates (n = 829); black, bacteremia isolates (n = 146); yellow, animal isolates (n = 77); red, ST398 MRSA isolates (n = 46); pink, reference strains (Mu50/N315). B) Detail highlighting the ST398 isolates. Markers and lanes on the right are defined as follows: black, carriage isolate; red, clinical isolate; 1, ST398 MRSA isolated from humans; 2, ST398 MRSA isolated from pigs; 3, ST398 MSSA human carriage isolates; 4, ST398 MSSA human bacteremia isolates; 5, ST398 MSSA animal clinical isolate.

Figure 1. A) Meta-analysis of the amplified fragment length polymorphism data obtained for the pig-associated methicillin-resistant Staphylococcus aureus sequence type 398 (ST398 MRSA) and its closely related methicillin-susceptible S. aureus (MSSA) strains, carriage MSSA isolates from healthy children and elderly persons, invasive MSSA from hospitalized children and elderly persons, and invasive animal S. aureus isolates (including 2 MRSA isolates) (10,11). Green and red represent 161,700 binary outcomes generated by high throughput restriction fragment length polymorphism with 147 marker fragments. Marker absence corresponds with green, marker presence corresponds with red, and gray represents ambiguous positions (i.e., weak bands), scored as marker absence in the mathematical analyses. ST398 MRSA strains are boxed. The dendrogram on the left shows the phylogenetic strain clustering; the dendrogram on the x-axis shows marker clustering. Marker groups are cluster specific. Markers on the right are defined as follows: blue, carriage isolates (n = 829); black, bacteremia isolates (n = 146); yellow, animal isolates (n = 77); red, ST398 MRSA isolates (n = 46); pink, reference strains (Mu50/N315). B) Detail highlighting the ST398 isolates. Markers and lanes on the right are defined as follows: black, carriage isolate; red, clinical isolate; 1, ST398 MRSA isolated from humans; 2, ST398 MRSA isolated from pigs; 3, ST398 MSSA human carriage isolates; 4, ST398 MSSA human bacteremia isolates; 5, ST398 MSSA animal clinical isolate.

Main Article

References
  1. Armand-Lefevre  L, Ruimy  R, Andremont  A. Clonal comparison of Staphylococcus aureus isolates from healthy pig farmers, human controls, and pigs. Emerg Infect Dis. 2005;11:7114.PubMed
  2. Witte  W, Strommenger  B, Stanek  C, Cuny  C. Methicillin-resistant Staphylococcus aureus ST398 in humans and animals, Central Europe. Emerg Infect Dis. 2007;13:2558.PubMed
  3. Hanselman  BA, Kruth  SA, Rousseau  J, Low  DE, Willey  BM, McGeer  A, Methicillin-resistant Staphylococcus aureus colonization in veterinary personnel. Emerg Infect Dis. 2006;12:19338.PubMed
  4. Voss  A, Loeffen  F, Bakker  J, Klaassen  C, Wulf  M. Methicillin-resistant Staphylococcus aureus in pig farming. Emerg Infect Dis. 2005;11:19656.PubMed
  5. Wulf  M, van Nes  A, Eikelenboom-Boskamp  A, de Vries  J, Melchers  W, Klaassen  C, Methicillin-resistant Staphylococcus aureus in veterinary doctors and students, the Netherlands. Emerg Infect Dis. 2006;12:193941.PubMed
  6. Ekkelenkamp  MB, Sekkat  M, Carpaij  N, Troelstra  A, Bonten  MJ. Endocarditis due to meticillin-resistant Staphylococcus aureus originating from pigs [in Dutch]. Ned Tijdschr Geneeskd. 2006;150:24427.PubMed
  7. Huijsdens  XW, van Dijke  BJ, Spalburg  E, van Santen-Verheuvel  MG, Heck  ME, Pluister  GN, Community-acquired MRSA and pig-farming. Ann Clin Microbiol Antimicrob. 2006;5:26. DOIPubMed
  8. Gibbs  SG, Green  CF, Tarwater  PM, Mota  LC, Mena  KD, Scarpino  PV. Isolation of antibiotic-resistant bacteria from the air plume downwind of a swine confined or concentrated animal feeding operation. Environ Health Perspect. 2006;114:10327.PubMed
  9. Feil  EJ, Enright  MC. Analyses of clonality and the evolution of bacterial pathogens. Curr Opin Microbiol. 2004;7:30813. DOIPubMed
  10. Melles  DC, Gorkink  RF, Boelens  HA, Snijders  SV, Peeters  JK, Moorhouse  MJ, Natural population dynamics and expansion of pathogenic clones of Staphylococcus aureus. J Clin Invest. 2004;114:173240.PubMed
  11. van Leeuwen  WB, Melles  DC, Alaidan  A, Al-Ahdal  M, Boelens  HA, Snijders  SV, Host- and tissue-specific pathogenic traits of Staphylococcus aureus. J Bacteriol. 2005;187:458491. DOIPubMed
  12. de Neeling  AJ, van den Broek  MJ, Spalburg  EC, van Santen-Verheuvel  MG, Dam-Deisz  WD, Boshuizen  HC, High prevalence of methicillin resistant Staphylococcus aureus in pigs. Vet Microbiol. 2007;122:36672. DOIPubMed
  13. Harmsen  D, Claus  H, Witte  W, Rothganger  J, Turnwald  D, Vogel  U. Typing of methicillin-resistant Staphylococcus aureus in a university hospital setting by using novel software for spa repeat determination and database management. J Clin Microbiol. 2003;41:54428. DOIPubMed
  14. Bens  CC, Voss  A, Klaassen  CH. Presence of a novel DNA methylation enzyme in methicillin-resistant Staphylococcus aureus isolates associated with pig farming leads to uninterpretable results in standard pulsed-field gel electrophoresis analysis. J Clin Microbiol. 2006;44:18756. DOIPubMed
  15. Devriese  LA. A simplified system for biotyping Staphylococcus aureus strains isolated from animal species. J Appl Bacteriol. 1984;56:21520.PubMed

Main Article

Page created: July 07, 2010
Page updated: July 07, 2010
Page reviewed: July 07, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external