Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 16, Number 12—December 2010
Synopsis

Cyprinid Herpesvirus 3

Benjamin Michel, Guillaume Fournier, François Lieffrig, Bérénice Costes, and Alain VanderplasschenComments to Author 
Author affiliations: Author affiliations: University of Liège, Liège, Belgium (B. Michel, G. Fournier, B. Costes, A. Vanderplasschen); Centre d'Economie Rurale Groupe, Marloie, Belgium (F. Lieffrig)

Main Article

Figure 2

A) Cladogram depicting relationships among viruses in the order Herpesvirales, based on the conserved regions of the terminase gene. The Bayesian maximum-likelihood tree was rooted by using bacteriophages T4 and RB69. Numbers at each node represent the posterior probabilities (values >90 shown) of the Bayesian analysis. B) Phylogenetic tree depicting the evolution of fish and amphibian herpesviruses, based on sequences of the DNA polymerase and terminase genes. The maximum-likelihood tree was

Figure 2. A) Cladogram depicting relationships among viruses in the order Herpesvirales, based on the conserved regions of the terminase gene. The Bayesian maximum-likelihood tree was rooted by using bacteriophages T4 and RB69. Numbers at each node represent the posterior probabilities (values >90 shown) of the Bayesian analysis. B) Phylogenetic tree depicting the evolution of fish and amphibian herpesviruses, based on sequences of the DNA polymerase and terminase genes. The maximum-likelihood tree was rooted with 2 mammalian herpesviruses (human herpesviruses 1 and 8). Maximum-likelihood values >80 and Bayesian values >90 are indicated above and below each node, respectively. Scale bar indicates branch lengths, which are based on the number of inferred substitutions. AlHV-1, alcelaphine herpesvirus 1; AtHV-3, ateline herpesvirus 3; BoHV-1, -4, -5, bovine herpesviruses 1, 4, 5; CeHV-2, -9, cercopithecine herpesviruses 2, 9; CyHV-1, -2, cyprinid herpesviruses 1, 2; EHV-1, -4, equid herpesvirus 1, 4; GaHV-1, -2, -3, gallid herpesvirus 1, 2, 3; HHV-1, -2, -3, -4, -5, -6, -7, -8, human herpesvirus 1, 2, 3, 4, 5, 6, 7, 8; IcHV-1, ictalurid herpesvirus 1; McHV-1, -4, -8, macacine herpesvirus 1, 4, 8; MeHV-1, meleagrid herpesvirus 1; MuHV-2, -4, murid herpesvirus 2, 4; OsHV-1, ostreid herpesvirus 1; OvHV-2, ovine herpesvirus 2; PaHV-1, panine herpesvirus 1; PsHV-1, psittacid herpesvirus 1; RaHV-1, -2, ranid herpesvirus 1, 2; SaHV-2, saimiriine herpesvirus 2; SuHV-1, suid herpesvirus 1; and TuHV-1, tupaiid herpesvirus 1. Adapted with permission from Waltzek et al. (6).

Main Article

References
  1. Food and Agriculture Organization of the United Nations, Fisheries and Aquaculture Department. Cultured Aquatic Species Information Programme. Cyprinus carpio [cited 2010 Sep 24]. http://www.fao.org/fishery/culturedspecies/Cyprinus_carpio/en
  2. Matsui  K, Honjo  M, Kohmatsu  Y, Uchii  K, Yonekura  R, Kawabata  Z. Detection and significance of koi herpesvirus (KHV) in freshwater environments. Freshw Biol. 2008;53:126272. DOIGoogle Scholar
  3. Hedrick  RP, Gilad  O, Yun  S, Spangenberg  J, Marty  R, Nordhausen  M, A herpesvirus associated with mass mortality of juvenile and adult koi, a strain of common carp. J Aquat Anim Health. 2000;12:4457. DOIGoogle Scholar
  4. Ronen  A, Perelberg  A, Abramowitz  J, Hutoran  M, Tinman  S, Bejerano  I, Efficient vaccine against the virus causing a lethal disease in cultured Cyprinus carpio. Vaccine. 2003;21:467784. DOIPubMedGoogle Scholar
  5. Davison  AJ, Eberle  R, Ehlers  B, Hayward  GS, McGeoch  DJ, Minson  AC, The order Herpesvirales. Arch Virol. 2009;154:1717. DOIPubMedGoogle Scholar
  6. Waltzek  TB, Kelley  GO, Alfaro  ME, Kurobe  T, Davison  AJ, Hedrick  RP. Phylogenetic relationships in the family Alloherpesviridae. Dis Aquat Organ. 2009;84:17994. DOIPubMedGoogle Scholar
  7. Mettenleiter  TC, Klupp  BG, Granzow  H. Herpesvirus assembly: an update. Virus Res. 2009;143:22234. DOIPubMedGoogle Scholar
  8. Neukirch  M, Kunz  U. Isolation and preliminary characterization of several viruses from koi (Cyprinus carpio) suffering gill necrosis and mortality. Bull Eur Assoc Fish Pathol. 2001;21:12535.
  9. Aoki  T, Hirono  I, Kurokawa  K, Fukuda  H, Nahary  R, Eldar  A, Genome sequences of three koi herpesvirus isolates representing the expanding distribution of an emerging disease threatening koi and common carp worldwide. J Virol. 2007;81:505865. DOIPubMedGoogle Scholar
  10. Michel  B, Leroy  B, Stalin Raj  V, Lieffrig  F, Mast  J, Wattiez  R, The genome of cyprinid herpesvirus 3 encodes 40 proteins incorporated in mature virions. J Gen Virol. 2010;91:45262. DOIPubMedGoogle Scholar
  11. van Beurden  SJ, Bossers  A, Voorbergen-Laarman  MH, Haenen  OL, Peters  S, Abma-Henkens  MH, Complete genome sequence and taxonomic position of anguillid herpesvirus 1. J Gen Virol. 2010;91:8807. DOIPubMedGoogle Scholar
  12. Kurita  J, Yuasa  K, Ito  T, Sano  M, Hedrick  RP, Engelsma  M, Molecular epidemiology of koi herpesvirus. Fish Pathol. 2009;44:5966. DOIGoogle Scholar
  13. Costes  B, Fournier  G, Michel  B, Delforge  C, Raj  VS, Dewals  B, Cloning of the koi herpesvirus genome as an infectious bacterial artificial chromosome demonstrates that disruption of the thymidine kinase locus induces partial attenuation in Cyprinus carpio koi. J Virol. 2008;82:495564. DOIPubMedGoogle Scholar
  14. Rosenkranz  D, Klupp  BG, Teifke  JP, Granzow  H, Fichtner  D, Mettenleiter  TC, Identification of envelope protein pORF81 of koi herpesvirus. J Gen Virol. 2008;89:896900. DOIPubMedGoogle Scholar
  15. Davidovich  M, Dishon  A, Ilouze  M, Kotler  M. Susceptibility of cyprinid cultured cells to cyprinid herpesvirus 3. Arch Virol. 2007;152:15416. DOIPubMedGoogle Scholar
  16. Oh  M, Jung  S, Choi  T, Kim  H, Rajendran  KV, Kim  Y, A viral disease occurring in cultured carp Cyprinus carpio in Korea. Fish Pathol. 2001;36:14751. DOIGoogle Scholar
  17. Pikarsky  E, Ronen  A, Abramowitz  J, Levavi-Sivan  B, Hutoran  M, Shapira  Y, Pathogenesis of acute viral disease induced in fish by carp interstitial nephritis and gill necrosis virus. J Virol. 2004;78:954451. DOIPubMedGoogle Scholar
  18. Dishon  A, Davidovich  M, Ilouze  M, Kotler  M. Persistence of cyprinid herpesvirus 3 in infected cultured carp cells. J Virol. 2007;81:482836. DOIPubMedGoogle Scholar
  19. Walster  CI. Clinical observations of severe mortalities in koi carp, Cyprinus carpio, with gill disease. Fish Veterinary Journal. 1999;3:548.
  20. Pokorova  D, Vesely  T, Piackova  V, Hulova  J. Current knowledge on koi herpesvirus (KHV): a review. Vet Med (Praha). 2005;50:13947.
  21. Perelberg  A, Smirnov  M, Hutoran  M, Diamant  A, Bejerano  Y, Kotler  M. Epidemiological description of a new viral disease afflicting cultured Cyprinus carpio in Israel. The Israeli Journal of Aquaculture—Bamidgeh. 2003;55:5–12.
  22. Bergmann  SM, Kempter  J, Riechardt  M, Fichtner  D. Investigation on the host specificity of koi herpesvirus (KHV) infection. Oral presentation at the 13th EAFP International Conference on Diseases of Fish and Shellfish. 2007 Sep 17–21; Grado, Italy. 2007 [cited 2010 Sep 24]. http://eafp.squarespace.com/storage/publishing/Abstract%20book%20final.pdf
  23. Bergmann  SM, Lutze  P, Schütze  H, Fischer  U, Dauber  M, Fichtner  D, Goldfish (Carassius auratus auratus) is a susceptible species for koi herpesvirus (KHV) but not for KHV disease (KHVD). Bull Eur Assoc Fish Pathol. 2010;30:7484.
  24. Bergmann  SM, Sadowski  J, Kielpinski  M, Bartlomiejczyk  M, Fichtner  D, Riebe  R, Susceptibility of koi × crucian carp and koi × goldfish hybrids to koi herpesvirus (KHV) and the development of KHV disease (KHVD). J Fish Dis. 2010;33:26772. DOIPubMedGoogle Scholar
  25. Ito  T, Sano  M, Kurita  J, Yuasa  K, Iida  T. Carp larvae are not susceptible to koi herpesvirus. Fish Pathol. 2007;42:1079. DOIGoogle Scholar
  26. Dishon  A, Perelberg  A, Bishara-Shieban  J, Ilouze  M, Davidovich  M, Werker  S, Detection of carp interstitial nephritis and gill necrosis virus in fish droppings. Appl Environ Microbiol. 2005;71:728591. DOIPubMedGoogle Scholar
  27. Gilad  O, Yun  S, Zagmutt-Vergara  FJ, Leutenegger  CM, Bercovier  H, Hedrick  RP. Concentrations of a koi herpesvirus (KHV) in tissues of experimentally infected Cyprinus carpio koi as assessed by real-time TaqMan PCR. Dis Aquat Organ. 2004;60:17987. DOIPubMedGoogle Scholar
  28. Miyazaki  T, Kuzuya  Y, Yasumoto  S, Yasuda  M, Kobayashi  T. Histopathological and ultrastructural features of koi herpesvirus (KHV)–infected carp, Cyprinus carpio, and the morphology and morphogenesis of KHV. Dis Aquat Organ. 2008;80:111. DOIPubMedGoogle Scholar
  29. Costes  B, Raj  VS, Michel  B, Fournier  G, Thirion  M, Gillet  L, The major portal of entry of koi herpesvirus in Cyprinus carpio is the skin. J Virol. 2009;83:281930. DOIPubMedGoogle Scholar
  30. Harmache  A, LeBerre  M, Droineau  S, Giovannini  M, Bremont  M. Bioluminescence imaging of live infected salmonids reveals that the fin bases are the major portal of entry for Novirhabdovirus. J Virol. 2006;80:36559. DOIPubMedGoogle Scholar
  31. Uchii  K, Matsui  K, Iida  T, Kawabata  Z. Distribution of the introduced cyprinid herpesvirus 3 in a wild population of common carp, Cyprinus carpio L. J Fish Dis. 2009;32:85764. DOIPubMedGoogle Scholar
  32. St-Hilaire  S, Beevers  N, Way  K, Le Deuff  RM, Martin  P, Joiner  C. Reactivation of koi herpesvirus infections in common carp Cyprinus carpio. Dis Aquat Organ. 2005;67:1523. DOIPubMedGoogle Scholar
  33. El-Matbouli  M, Rucker  U, Soliman  H. Detection of Cyprinid herpesvirus-3 (CyHV-3) DNA in infected fish tissues by nested polymerase chain reaction. Dis Aquat Organ. 2007;78:238. DOIPubMedGoogle Scholar
  34. Soliman  H, El-Matbouli  M. Immunocapture and direct binding loop mediated isothermal amplification simplify molecular diagnosis of cyprinid herpesvirus-3. J Virol Methods. 2009;162:915. DOIPubMedGoogle Scholar
  35. Adkison  MA, Gilad  O, Hedrick  RP. An enzyme-linked immunosorbent assay (ELISA) for detection of antibodies to the koi herpesvirus (KHV) in the serum of koi Cyprinus carpio. Fish Pathol. 2005;40:5362. DOIGoogle Scholar
  36. Bly  JE, Clem  LW. Temperature and teleost immune functions. Fish Shellfish Immunol. 1992;2:15971. DOIGoogle Scholar
  37. Perelberg  A, Ilouze  M, Kotler  M, Steinitz  M. Antibody response and resistance of Cyprinus carpio immunized with cyprinid herpes virus 3 (CyHV-3). Vaccine. 2008;26:37506. DOIPubMedGoogle Scholar
  38. Shapira  Y, Magen  Y, Zak  T, Kotler  M, Hulata  G, Levavi-Sivan  B. Differential resistance to koi herpes vius (KHV)/carp interstitial nephritis and gill necrosis virus (CNGV) among common carp (Cyprinus carpio L.) strains and crossbreds. Aquaculture. 2005;245:111. DOIGoogle Scholar
  39. Rakus  KL, Wiegertjes  GF, Adamek  M, Siwicki  AK, Lepa  A, Irnazarow  I. Resistance of common carp (Cyprinus carpio L.) to cyprinid herpesvirus-3 is influenced by major histocompatibility (MH) class II B gene polymorphism. Fish Shellfish Immunol. 2009;26:73743. DOIPubMedGoogle Scholar
  40. Yasumoto  S, Kuzuya  Y, Yasuda  M, Yoshimura  T, Miyazaki  T. Oral immunization of common carp with a liposome vaccine fusing koi herpesvirus antigen. Fish Pathol. 2006;41:1415. DOIGoogle Scholar

Main Article

Page created: August 28, 2011
Page updated: August 28, 2011
Page reviewed: August 28, 2011
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external