Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 16, Number 3—March 2010
Letter

Transmission of West Nile Virus during Horse Autopsy

Marietjie VenterComments to Author , Johan Steyl, Stacey Human, Jacqueline Weyer, Dewald Zaayman, Lufcille Blumberg, Patricia A. Leman, Janusz T. Pawęska, and Robert Swanepoel
Author affiliations: University of Pretoria, Pretoria, South Africa (M. Venter, J. Steyl, S. Human, D. Zaayman); National Institute for Communicable Diseases, Sandringham, South Africa (M. Venter, J. Weyer, L. Blumberg, P.A. Lehman, J. Paweska, R. Swanepoel)

Main Article

Figure

Phylogenetic comparison of West Nile virus (WNV) nonstructural protein 5 partial gene fragment identified in a veterinary student’s serum and in the virus isolate obtained from mouse brain and the horse’s brain after autopsy (triangles) relative to other WNV strains from South Africa and elsewhere. The neighbor-joining tree was compiled by using MEGA version 4 software (www.megasoftware.net/under) and 1,000 bootstrap replicates by using the maximum composite likelihood algorithm. Genetic lineage

Figure. Phylogenetic comparison of West Nile virus (WNV) nonstructural protein 5 partial gene fragment identified in a veterinary student’s serum and in the virus isolate obtained from mouse brain and the horse’s brain after autopsy (triangles) relative to other WNV strains from South Africa and elsewhere. The neighbor-joining tree was compiled by using MEGA version 4 software (www.megasoftware.net/under) and 1,000 bootstrap replicates by using the maximum composite likelihood algorithm. Genetic lineages are indicated on the right as described (37). Scale bar indicates nucleotide substitutions per site. JEV, Japanese encephalitis virus (included as outgroup).

Main Article

References
  1. Hayes  EB, Sejvar  JJ, Zaki  SR, Lanciotti  RS, Bode  AV, Campbell  GL. Virology, pathology, and clinical manifestations of West Nile virus disease. Emerg Infect Dis. 2005;11:11749.PubMedGoogle Scholar
  2. Hayes  EB, Gubler  DJ. West Nile virus: epidemiology and clinical features of an emerging epidemic in the United States. Annu Rev Med. 2006;57:18194. DOIPubMedGoogle Scholar
  3. Burt  FJ, Grobbelaar  AA, Leman  PA, Anthony  FS, Gibson  GV, Swanepoel  R. Phylogenetic relationships of southern African West Nile virus isolates. Emerg Infect Dis. 2002;8:8206.PubMedGoogle Scholar
  4. Lvov  DK, Butenko  AM, Gromashevsky  VL, Kovtunov  AI, Prilipov  AG, Kinney  R, West Nile virus and other zoonotic viruses in Russia: examples of emerging-reemerging situations. Arch Virol Suppl. 2004;18:8596.PubMedGoogle Scholar
  5. Bondre  VP, Jadi  RS, Mishra  AC, Yergolkar  PN, Arankalle  VA. West Nile virus isolates from India: evidence for a distinct genetic lineage. J Gen Virol. 2007;88:87584. DOIPubMedGoogle Scholar
  6. Beasley  DW, Li  L, Suderman  MT, Barrett  AD. Mouse neuroinvasive phenotype of West Nile virus strains varies depending upon virus genotype. Virology. 2002;296:1723. DOIPubMedGoogle Scholar
  7. Venter  M, Human  S, Zaayman  D, Gerdes  GH, Williams  J, Steyl  J, Lineage 2 West Nile virus as cause of fatal neurologic disease in horses, South Africa. Emerg Infect Dis. 2009;15:87784. DOIPubMedGoogle Scholar
  8. Venter  M, Myers  TG, Wilson  MA, Kindt  TJ, Paweska  JT, Burt  FJ, Gene expression in mice infected with West Nile virus strains of different neurovirulence. Virology. 2005;342:11940. DOIPubMedGoogle Scholar
  9. Centers for Disease Control and Prevention. Laboratory-acquired West Nile virus infections—United States, 2002. JAMA. 2003;289:4145. DOIPubMedGoogle Scholar
  10. Venter  M, Burt  FJ, Blumberg  L, Fickl  H, Paweska  J, Swanepoel  R. Cytokine induction after laboratory-acquired West Nile virus infection. N Engl J Med. 2009;360:12602. DOIPubMedGoogle Scholar

Main Article

Page created: December 14, 2010
Page updated: December 14, 2010
Page reviewed: December 14, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external