Volume 16, Number 3—March 2010
Research
Borrelia, Ehrlichia, and Rickettsia spp. in Ticks Removed from Persons, Texas, USA
Table 1
Primer name |
Gene |
Primer sequence (5′ → 3′) |
Specificity |
Screen |
TM |
Reference |
---|---|---|---|---|---|---|
Tick DNA | ||||||
85F | 12S | TTAAGCTTTTCAGAGGAATTTGCTC | Unknown | Primary | 54.0 | This study |
225R | 12S | TTTWWGCTGCACCTTGACTTAA | Unknown | Primary | 52.7 | This study |
Borrelia spp. | ||||||
FlaLL | flaB | ACATATTCAGATGCAGACAGAGGT | Genus | Primary | 58.3 | (4) |
FlaRL | flaB | GCAATCATAGCCATTGCAGATTGT | Genus | Primary | 58.9 | (4) |
FlaLS | flaB | AACAGCTGAAGAGCTTGGAATG | Genus | Primary | 57.5 | (4) |
FlaRS | flaB | CTTTGATCACTTATCATTCTAATAGC | Genus | Primary | 53.3 | (4) |
BL-Fla 522F | flaB | GGTACATATTCAGATGCAGACAGAGGG | B. lonestari | Primary | 61.3 | This study |
BL-Fla 1182R | flaB | GCACTTGATTTGCTTGTGCAATCATAGCC | B. lonestari | Primary | 64.0 | This study |
BL-Fla 662F | flaB | CTGAAGAGCTTGGAATGCAACCTGC | B. lonestari | Primary | 62.8 | This study |
BL-Fla 860R | flaB | GAGCTAATCCCACCTTGAGCTGG | B. lonestari | Primary | 61.2 | This study |
BL-Fla 341F | flaB | AGCTGATGATGCTGCTGGTATGGG | Genus | Alternate | 63.2 | This study |
BL-Fla 730R | flaB | GCTTGTGCTCCAGTTAGTGATGCTGG | Genus | Alternate | 64.1 | This study |
BL-16S 227F | 16S | TCACACTGGAACTGAGATACGGTCC | Genus | Alternate | 62.1 | This study |
BL-16S 920R | 16S | GAATTAAACCACATGCTCCACCGC | Genus | Alternate | 61.0 | This study |
BL-HSP 71F | groEL | CTTATGTTGAAGGAATGCAATTTGA | B. lonestari | Alternate | 55.6 | This study |
BL-HSP 271R |
groEL |
CAATATCTTCAGCAATAATTAGCAAAGGT |
B. lonestari |
Alternate |
58.2 |
This study |
Rickettsia spp. | ||||||
Rr.190 70P | rompA | ATGGCGAATATTTCTCCAAAA | Genus | Primary | 52.5 | (5) |
Rr.190 602N | rompA | AGTGCAGCATTCGCTCCCCCT | Genus | Primary | 64.9 | (5) |
BG1–21 | rompB | GGCAATTAATATCGCTGACGG | Genus | Alternate | 55.6 | (6) |
BG2–20 | rompB | GCATCTGCACTAGCACTTTC | Genus | Alternate | 55.2 | (6) |
RrCS 372 | gltA | TTTGTAGCTCTTCTCATCCTATGGC | Genus | Alternate | 59.0 | (7) |
RrCS 989 | gltA | CCCAAGTTCCTTTAATACTTCTTTGC | Genus | Alternate | 57.5 | (7) |
Primer 1 | 17kDa | GCTCTTGCAACTTCTATGTT | Genus | Alternate | 52.3 | (8) |
Primer 2 |
17kDa |
CATTGTTCGTCAGGTTGGCG |
Genus |
Alternate |
57.9 |
(8) |
Ehrlichia spp. | ||||||
Ehr DSB 330F | dsb | GATGATGTCTGAAGATATGAAACAAAT | Genus | Primary | 55.5 | (9) |
Ehr DSB 728R | dsb | CTGCTCGTCTATTTTACTTCTTAAAGT | Genus | Primary | 56.6 | (9) |
ECC-F | 16S | AGAACGAACGCTGGCGGCAAGCC | Genus | Alternate | 68.1 | (10) |
ECB-R | 16S | CGTATTACCGCGGCTGCTGGCA | Genus | Alternate | 65.6 | (10) |
ECAN-F | 16S | ATTTATAGCCTCTGGCTATAGGA | E. canis | Alternate | 54.9 | (11) |
HE1-F | 16S | CAATTGCTTATAACCTTTTGGTTATAAAT | E. chaffeensis | Alternate | 55.6 | (12) |
EE72-F | 16S | AATTCCTAAATAGTCTCTGACTATT | E. ewingii | Alternate | 52.6 | (11) |
HE3-R | 16S | TATAGGTACCGTCATTATCTTCCCTAT | Genus | Alternate | 57.6 | (13) |
*TM, melting temperature, °C.
References
- United States Department of Agriculture. Ticks of veterinary importance. Agriculture Handbook no. 485. Rockville (MD): The Department; 1976. p. 21–35.
- Cooley RA, Kohls GM. The genus Ixodes in North America. Washington: US Government Printing Office; 1945. p. 7–11.
- Keirans JE, Litwak TR. Pictorial key to the adults of hard ticks, family Ixodidae (Ixodida: Ixodoidea), east of the Mississippi River. J Med Entomol. 1989;26:435–48.PubMedGoogle Scholar
- Barbour AG, Maupin GO, Teltow GJ, Carter CJ, Piesman J. Identification of an uncultivable Borrelia species in the hard tick Amblyomma americanum: possible agent of a Lyme disease-like illness. J Infect Dis. 1996;173:403–9.PubMedGoogle Scholar
- Regnery RL, Spruill CL, Plikaytis BD. Genotypic identification of rickettsiae and estimation of intraspecies sequence divergence for portions of two rickettsial genes. J Bacteriol. 1991;173:1576–89.PubMedGoogle Scholar
- Eremeeva M, Yu X, Raoult D. Differentiation among spotted fever group rickettsiae species by analysis of restriction fragment length polymorphism of PCR-amplified DNA. J Clin Microbiol. 1994;32:803–10.PubMedGoogle Scholar
- Kollars TM Jr, Kengluecha A. Spotted fever group Rickettsia in Dermacentor variabilis (Acari: Ixodidae) infesting raccoons (Carnivora: Procyonidae) and opossums (Marsupialia: Didelphimorphidae) in Tennessee. J Med Entomol. 2001;38:601–2. DOIPubMedGoogle Scholar
- Webb L, Carl M, Malloy DC, Dasch GA, Azad AF. Detection of murine typhus infection in fleas by using the polymerase chain reaction. J Clin Microbiol. 1990;28:530–4.PubMedGoogle Scholar
- Doyle CK, Labruna MB, Breitschwerdt EB, Tang YW, Corstvet RE, Hegarty BC, Detection of medically important Ehrlichia by quantitative multicolor TaqMan real-time polymerase chain reaction of the dsb gene. J Mol Diagn. 2005;7:504–10.PubMedGoogle Scholar
- Dawson JE, Stallknecht DE, Howerth EW, Warner C, Biggie K, Davidson WR, Susceptibility of white-tailed deer (Odocoileus virginianus) to infection with Ehrlichia chaffeensis, the etiologic agent of human ehrlichiosis. J Clin Microbiol. 1994;32:2725–8.PubMedGoogle Scholar
- Dawson JE, Biggie KL, Warner CK, Cookson K, Jenkins S, Levine JF, Polymerase chain reaction evidence of Ehrlichia chaffeensis, an etiologic agent of human ehrlichiosis, in dogs from southeast Virginia. Am J Vet Res. 1996;57:1175–9.PubMedGoogle Scholar
- Anderson BE, Sumner JW, Dawson JE, Tzianabos T, Greene CR, Olson JG, Detection of the etiologic agent of human ehrlichiosis by polymerase chain reaction. J Clin Microbiol. 1992;30:775–80.PubMedGoogle Scholar
- Long SW, Pound JM, Yu XJ. Ehrlichia prevalence in Amblyomma americanum, central Texas. Emerg Infect Dis. 2004;10:1342–3.PubMedGoogle Scholar
- Billings AN, Teltow GJ, Weaver SC, Walker DH. Molecular characterization of a novel Rickettsia species from Ixodes scapularis in Texas. Emerg Infect Dis. 1998;4:305–9. DOIPubMedGoogle Scholar
- Weller SJ, Baldridge GD, Munderloh UG, Noda H, Simser J, Kurtti TJ. Phylogenetic placement of rickettsiae from the ticks Amblyomma americanum and Ixodes scapularis. J Clin Microbiol. 1998;36:1305–17.PubMedGoogle Scholar
- Roux V, Fournier PE, Raoult D. Differentiation of spotted fever group rickettsiae by sequencing and analysis of restriction fragment length polymorphism of PCR-amplified DNA of the gene encoding the protein rOmpA. J Clin Microbiol. 1996;34:2058–65.PubMedGoogle Scholar
- Silveira I, Pacheco RC, Szabo MP, Ramos HG, Labruna MB. Rickettsia parkeri in Brazil. Emerg Infect Dis. 2007;13:1111–3.PubMedGoogle Scholar
- Wikswo ME, Hu R, Dasch GA, Krueger L, Arugay A, Jones K, Detection and identification of spotted fever group rickettsiae in Dermacentor species from southern California. J Med Entomol. 2008;45:509–16. DOIPubMedGoogle Scholar
- Moore VA IV, Varela AS, Yabsley MJ, Davidson WR, Little SE. Detection of Borrelia lonestari, putative agent of southern tick-associated rash illness, in white-tailed deer (Odocoileus virginianus) from the southeastern United States. J Clin Microbiol. 2003;41:424–7. DOIPubMedGoogle Scholar
- Lin T, Gao L, Seyfang A, Oliver JH Jr. ‘Candidatus Borrelia texasensis’ from the American dog tick Dermacentor variabilis. Int J Syst Evol Microbiol. 2005;55:685–93. DOIPubMedGoogle Scholar
- Gill JS, Ullmann AJ, Loftis AD, Schwan TG, Raffel SJ, Schrumpf ME, Novel relapsing fever spirochete in bat tick. Emerg Infect Dis. 2008;14:522–3. DOIPubMedGoogle Scholar
- Lin T, Oliver JH Jr, Gao L. Comparative analysis of Borrelia isolates from southeastern USA based on randomly amplified polymorphic DNA fingerprint and 16S ribosomal gene sequence analyses. FEMS Microbiol Lett. 2003;228:249–57. DOIPubMedGoogle Scholar
- Fraser CM, Casjens S, Huang WM, Sutton GG, Clayton R, Lathigra R, Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature. 1997;390:580–6. DOIPubMedGoogle Scholar
- Hotopp JC, Lin M, Madupu R, Crabtree J, Angiuoli SV, Eisen JA, Comparative genomics of emerging human ehrlichiosis agents. PLoS Genet. 2006;2:e21. DOIPubMedGoogle Scholar
- Labruna MB, McBride JW, Camargo LM, Aguiar DM, Yabsley MJ, Davidson WR, A preliminary investigation of Ehrlichia species in ticks, humans, dogs, and capybaras from Brazil. Vet Parasitol. 2007;143:189–95. DOIPubMedGoogle Scholar
- McBride JW, Ndip LM, Popov VL, Walker DH. Identification and functional analysis of an immunoreactive DsbA-like thio-disulfide oxidoreductase of Ehrlichia spp. Infect Immun. 2002;70:2700–3. DOIPubMedGoogle Scholar
- Taylor JP, Tanner WB, Rawlings JA, Buck J, Elliott LB, Dewlett HJ, Serological evidence of subclinical Rocky Mountain spotted fever infections in Texas. J Infect Dis. 1985;151:367–9.PubMedGoogle Scholar
- Arguin PM, Singleton J, Rotz LD, Marston E, Treadwell TA, Slater K, An investigation into the possibility of transmission of tick-borne pathogens via blood transfusion. Transfusion-associated Tick-borne Illness Task Force. Transfusion. 1999;39:828–33. DOIPubMedGoogle Scholar
- McQuiston JH, Childs JE, Chamberland ME, Tabor E. Transmission of tick-borne agents of disease by blood transfusion: a review of known and potential risks in the United States. Transfusion. 2000;40:274–84. DOIPubMedGoogle Scholar
- Stromdahl EY, Williamson PC, Kollars TM Jr, Evans SR, Barry RK, Vince MA, Evidence of Borrelia lonestari DNA in Amblyomma americanum (Acari: Ixodidae) removed from humans. J Clin Microbiol. 2003;41:5557–62. DOIPubMedGoogle Scholar
- Taft SC, Miller MK, Wright SM. Distribution of borreliae among ticks collected from eastern states. Vector Borne Zoonotic Dis. 2005;5:383–9. DOIPubMedGoogle Scholar
- Mixson TR, Campbell SR, Gill JS, Ginsberg HS, Reichard MV, Schulze TL, Prevalence of Ehrlichia, Borrelia, and rickettsial agents in Amblyomma americanum (Acari: Ixodidae) collected from nine states. J Med Entomol. 2006;43:1261–8. DOIPubMedGoogle Scholar
- Mahan SM, Peter TF, Simbi BH, Kocan K, Camus E, Barbet AF, Comparison of efficacy of American and African Amblyomma ticks as vectors of heartwater (Cowdria ruminantium) infection by molecular analyses and transmission trials. J Parasitol. 2000;86:44–9.PubMedGoogle Scholar
- de Lemos ER, Machado RD, Coura JR, Guimaraes MA, Freire NM, Amorim M, Epidemiological aspects of the Brazilian spotted fever: seasonal activity of ticks collected in an endemic area in São Paulo, Brazil. Rev Soc Bras Med Trop. 1997;30:181–5.PubMedGoogle Scholar
- Ripoll CM, Remondegui CE, Ordonez G, Arazamendi R, Fusaro H, Hyman MJ, Evidence of rickettsial spotted fever and ehrlichial infections in a subtropical territory of Jujuy, Argentina. Am J Trop Med Hyg. 1999;61:350–4.PubMedGoogle Scholar
Page created: December 14, 2010
Page updated: December 14, 2010
Page reviewed: December 14, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.